单选题 (共 6 题 ),每题只有一个选项正确
甲乙二人分别向同一目标独立重复射击, 每次射击命中目标的概率均为 $\frac{1}{2}$, 甲射击 4 次, 乙射击 3 次,则甲命中次数大于乙命中次数的概率为
$\text{A.}$ 1
$\text{B.}$ $\frac{1}{2}$.
$\text{C.}$ $\frac{1}{3}$.
$\text{D.}$ $\frac{1}{4}$.
在单位圆周上随机取一点, 该点坐标记为 $(X, Y)$, 则 $D(X)=$
$\text{A.}$ $\frac{1}{2}$.
$\text{B.}$ $\frac{1}{3}$.
$\text{C.}$ $\frac{1}{4}$.
$\text{D.}$ $\frac{1}{5}$.
已知离散型随机变量 $X$ 与连续型随机变量 $Y$ 相互独立,则
$\text{A.}$ $X+Y$ 为离散型随机变量.
$\text{B.}$ $X Y$ 为离散型随机变量.
$\text{C.}$ $X+Y$ 为连续型随机变量.
$\text{D.}$ $X Y$ 为连续型随机变量.
甲袋中有 4 只红球, 有 6 只白球, 乙袋中有 6 只红球, 10 只白球, 现从两袋中各任取 1 球, 则 2 个球颜色相同的概率是
$\text{A.}$ $\frac{6}{40}$
$\text{B.}$ $\frac{15}{40}$
$\text{C.}$ $\frac{21}{40}$
$\text{D.}$ $\frac{19}{40}$
设随机变量 $X$ 服从 $N\left(27,0.2^2\right)$ 分布, 则其浙近线在 ________ 处
$\text{A.}$ $x=27$
$\text{B.}$ $y=27$
$\text{C.}$ $y=0$
$\text{D.}$ $x=0$
设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 $[-1,3]$ 上的均匀分布的概率密度, 若 $f(x)=\left\{\begin{array}{l}a f_1(x), x \leq 0 \\ b f_2(x), x>0\end{array}(a>0, b>0)\right.$ 为随机变量的概率密度, 则 $a, b$ 应满足
$\text{A.}$ $2 a+3 b=4$
$\text{B.}$ $3 a+2 b=4$
$\text{C.}$ $a+b=1$
$\text{D.}$ $a+b=2$