一、单选题 (共 4 题,每小题 5 分,共 50 分,每题只有一个选项正确)
若 $\lim _{x \rightarrow 0} \frac{a x^2+b x+1-e^{x^2-2 x}}{x^2} =2$, 则
$\text{A.}$ $a={5}, b=-2$.
$\text{B.}$ $a=-2, b=5 $
$\text{C.}$ $a={2}, b=0$.
$\text{D.}$ $a={4}, b=-4$.
下列有关定义在 $(-\infty,+\infty)$ 上的可导函数 $f(x)$ 的说法正确的是
$\text{A.}$ 若 $\lim _{x \rightarrow+\infty} f(x)=A$, 并且 $\exists x_0 \in(0,+\infty)$, 使得 $f\left(x_0\right)>A, \exists x_1 \in(0,+\infty)$ 并且 $x_0 \neq x_1$, 使得 $f\left(x_1\right) < A$, 那么 $f(x)$ 在 $(0,+\infty)$ 内有最大值和最小值。
$\text{B.}$ 若 $f(x)$ 是奇函数, 并且 $\lim _{x \rightarrow+\infty} f^{\prime}(x)=A(\neq 0)$, 则 $f(x)$ 的斜渐近线条数一定是偶数。
$\text{C.}$ 若 $f^{\prime}(x)=f(x)+\int_0^x f(t) \mathrm{d} t$ 并且 $f(0)=1$, 则 $f^{\prime \prime}(0)=2$
$\text{D.}$ 令 $g(x)=\left\{\begin{array}{l}\frac{f(x)-f\left(x_0\right)}{x-x_0}, x \neq x_0 \\ f^{\prime}\left(x_0\right), x=x_0\end{array}\right.$, 其中 $x_0 \in(-\infty,+\infty)$, 则 $g^{\prime}\left(x_0\right)$ 存在
当 $x \rightarrow 0$ 时, 无穷小 $\alpha=\sqrt{1+x \cos x}-\sqrt{1+\sin x}, \beta=\int_0^{\mathrm{e}^{2 x}-1} \frac{\sin ^2 t}{t} \mathrm{~d} t, \gamma=\cos (\tan x)-\cos x$的阶数由低到高的次序为
$\text{A.}$ $\alpha, \beta, \gamma$
$\text{B.}$ $\beta, \gamma, \alpha$
$\text{C.}$ $\gamma, \alpha, \beta$
$\text{D.}$ $\beta, \alpha, \gamma$
设 $f(x)$ 在 $x=0$ 的邻域内二阶连续可导, 且 $f^{\prime}(0)=0, \lim _{x \rightarrow 0} \frac{f^{\prime}(x)+2 f^{\prime \prime}(x)}{x-x^2}=4$, 则下列结论正确的是
$\text{A.}$ $x=0$ 为 $f(x)$ 的极小值点
$\text{B.}$ $x=0$ 为 $f(x)$ 的极大值点
$\text{C.}$ $(0, f(0))$ 为 $y=f(x)$ 的拐点
$\text{D.}$ $x=0$ 既不是 $f(x)$ 的极值点, 也不是 $f(x)$ 的拐点
二、填空题 (共 11 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
$\lim _{x \rightarrow 0} \frac{\ln \left(\sin ^2 x+\mathrm{e}^x\right)-x}{\ln \left(\mathrm{e}^{2 x}-x^2\right)-2 x}=$
$\lim _{x \rightarrow 0} \frac{\left(\cos x-\mathrm{e}^{x^2}\right) \sin x^2}{\frac{x^2}{2}+1-\sqrt{1+x^2}}=$
$I=\lim _{x \rightarrow 0} \frac{(1-\sqrt{\cos x})(1-\sqrt[3]{\cos x}) \cdots(1-\sqrt[n]{\cos x})}{(1-\cos x)^{n-1}}=$
设 $\lim _{x \rightarrow+\infty}\left(\sqrt{x^2-x+1}-a x-b\right)=0$, 则 $a=$ ,$b=$
设 $\lim _{x \rightarrow 0} \frac{\ln \left[1+\frac{f(x)}{\sin x}\right]}{a^x-1}=\frac{1}{2}(a>0, a \neq 1)$, 求 $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}$.
$\lim _{x \rightarrow 0} \dfrac{\ln \left(e^{\sin x}+\sqrt[3]{1-\cos x}\right)-\sin x}{\arctan (4 \sqrt[3]{1-\cos x})}=$
函数 $f(x)=\frac{x}{\tan x}, x=k \pi$ 和 $x=k \pi+\frac{\pi}{2} \quad$ ( $k$ 是整数 $)$ 是间断点, 其中无穷间 断点是 ________
设 $a_n, b_n>0, \lim _{n \rightarrow \infty} a_n=0$ 且 $\int_{\sin a_n}^{a_n} e^{x^2} \mathrm{~d} x=b_n \ln \left(1+b_n\right)$ ,则 $\lim _{n \rightarrow \infty} \frac{a_n^3}{b_n^2}=$
求 $\lim _{n \rightarrow \infty}\left(\sin \frac{1}{n^2+3 n^3}\right) \sum_{k=1}^n k e^{\frac{k}{n}}$;
$\lim _{x \rightarrow 0}\left(\cos x+\mathrm{e}^{-x^2}-1\right)^{\frac{x}{\arctan x-x}}=$
$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{|x|}{1+\sin x} \mathrm{~d} x=$
三、解答题 ( 共 14 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
证明下列不等式:
(1) 设 $x \in[0, \pi], t \in[0,1]$, 则 $\sin t x \geq t \sin x$;
(2) 设 $p>0$, 则 $\int_0^{\frac{\pi}{2}}|\sin u|^p \mathrm{~d} u \geq \frac{\pi}{2(p+1)}$;
(3) 设 $x \geq 0, p>0$, 则 $\int_0^x|\sin u|^p \mathrm{~d} u \geq \frac{x|\sin x|^p}{p+1}$.
求极限 $\lim _{x \rightarrow 0} \frac{\left(1+\frac{1}{2} x^2-\sqrt{1+x^2}\right) \cos x^2}{\cos x-e^{-\frac{x^2}{2}}}$
设 $f(x)=\left(x^3 e^{x^2}+1\right) \sin ^3 x+\int_{-\pi}^\pi f(x) \sin ^3 x d x$, 求 $f(x)$.
设 $f(x)$ 在 $[0,1]$ 上连续,在 $(0,1)$ 内二阶可导,且 $\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=1, \lim _{x \rightarrow 1^{-}} \frac{f(x)}{x-1}=2$. 证明:
(1) 存在 $c \in(0,1)$, 使得 $f(c)=0$;
(2) 存在 $\xi \in(0,1)$, 使得 $f^{\prime \prime}(\xi)=f(\xi)$;
(3) 存在 $\eta \in(0,1)$, 使得 $f^{\prime \prime}(\eta)-3 f^{\prime}(\eta)+2 f(\eta)=0$.
计算:$\lim _{x \rightarrow 0} \dfrac{x-\int_0^x\left(1+\sin ^2 t\right)^2 \mathrm{~d} t}{x^2 \sin x}$.
设 $f(x)$ 在 $(a, b)$ 上可导,且已知
$$
x_1, x_2 \in(a, b), x_1 < x_2 \text { 且 } f^{\prime}\left(x_1\right) f^{\prime}\left(x_2\right) < 0 .
$$
证明: 存在 $\xi \in\left(x_1, x_2\right)$ ,使得 $f^{\prime}(\xi)=0$.
求极限 $\lim _{x \rightarrow 0} \frac{1}{x^4}\left[\ln \left(1+\sin ^2 x\right)-6(\sqrt[3]{2-\cos x}-1)\right]$
求极限 $$\lim _{x \rightarrow 0} \int_0^x\left(\dfrac{\arctan t}{t}\right)^{\dfrac{1}{\int_0^t \ln (1+u) d u}} \cot x d t$$
求极限 $\lim _{x \rightarrow+\infty}\left[\frac{\ln \left(x+\sqrt{x^2+1}\right)}{\ln \left(x+\sqrt{x^2-1}\right)}\right]^{x^2 \ln x}$.
计算 $ \lim _{x \rightarrow 0} \frac{3 \sin x+x^2 \cos \frac{1}{x}}{(1+\cos x) \ln (1+x)}$
设 $p$ 是某正整数, $I_n=\frac{1^p+2^p+\cdots+n^p}{n^p}-\frac{n}{p+1}$ ,试求 $\lim _{n \rightarrow \infty} I_n$.
已知函数 $f(x)$ 连续, 请讨论 $\int_0^{\frac{\pi}{2}} f(\sin x) d x$ 与 $\int_0^{\frac{\pi}{2}} f(\cos x) d x$ 的大小关系, 并计算定积分 $\int_0^{\frac{\pi}{2}} \frac{\ln (1+\sqrt{\sin x})-\ln (1+\sqrt{\cos x})+\sin ^3 x}{2} d x$.
已知 $f^{\prime}(x)=\frac{1}{\sqrt{1+x^2}}, g^{\prime}(x)=\frac{1}{1+2 x}$, 且 $f(0)=g(0)=0$, 试求 $\lim _{x \rightarrow 0}\left[\frac{1}{f(x)}-\frac{1}{g(x)}\right]$.
求极限
$$
\lim _{x \rightarrow 0}\left(\frac{-\cot x}{\mathrm{e}^{-x}}+\frac{1}{\mathrm{e}^{-2 x} \sin ^2 x}+\frac{1}{x^2}\right)
$$