矩阵的幂

数 学



单选题 (共 3 题 ),每题只有一个选项正确
设 $A$ 是 3 阶矩阵,将 $A$ 的第1 列与第 2 列互换得到 $B$ ,再将 $B$ 的第 2 列加到第 3 列得到 $C$ ,则满足 $A Q= C$ 的可逆矩阵 $Q$ 为( )
$\text{A.}$ $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$ $\text{B.}$ $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$ $\text{C.}$ $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]$ $\text{D.}$ $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

设 $A$ 是 3 阶方阵,将 $A$ 的第 1 列与第 2 列交换得到 $B$ ,再把 $B$ 的第 2 列加到第 3列得到 $C$ ,则满足 $A Q = C$ 的可逆矩阵 $Q$ 为 。
$\text{A.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ $\text{B.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$ $\text{C.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$ $\text{D.}$ $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

设 $A$ 为 3 阶矩阵,将 $A$ 的第 2 行加到第 1 行、第 1 列与第 2 列对调、第 2 列的 2 倍加到第 3 列得到 $C =\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$ ,则 $A =(\quad)$ .
$\text{A.}$ $\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right)$ $\text{B.}$ $\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & 1\end{array}\right)$ $\text{C.}$ $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -2 \\ 1 & 0 & 1\end{array}\right)$ $\text{D.}$ $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & -2 & -1 \\ 1 & 1 & 0\end{array}\right)$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。