单选题 (共 3 题 ),每题只有一个选项正确
设 $A$ 与 $B$ 为 $n$ 阶方阵, 且 $A B = O$, 则必有
$\text{A.}$ $A = O$ 或 $B = O$.
$\text{B.}$ $A B = B A$.
$\text{C.}$ $| A |=0$ 或 $| B |=0$.
$\text{D.}$ $| A |+| B |=0$.
设 $n$ 阶矩阵 $A, B$ 满足 $A A^T=E, B B^T=E$, 其中 $E$ 是 $n$ 阶单位矩阵,则()
$\text{A.}$ $|A+B|=|A|+|B|$ 总成立
$\text{B.}$ $|A+B|=|A|+|B|$ 总不成立
$\text{C.}$ 当 $|A||B| < 0$ 时, $|A+B|=|A|+|B|$ 成立
$\text{D.}$ 当 $|A||B|>0$ 时, $|A+B|=|A|+|B|$ 成立
设 $A$ 为 $m \times n$ 矩阵, $E$ 为 $m$ 阶单位矩阵,则下列结论错误的是
$\text{A.}$ $A ^{\top} A$ 是对称矩阵
$\text{B.}$ $A A ^{ T }$ 是对称矩阵
$\text{C.}$ $A ^{ T } A + A A ^{ T }$ 是对称矩阵
$\text{D.}$ $E + A A ^{ T }$ 是对称矩阵