矩阵的逆

数 学



单选题 (共 3 题 ),每题只有一个选项正确
设 $A$ 为 2 阶可逆矩阵, $A^{-1}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. 将 $A$ 第一行的 2 倍加到第二行上, 得到矩阵 $B$, 则 $B^{-1}=$
$\text{A.}$ $\left(\begin{array}{ll}a_{11}-\frac{1}{2} a_{12} & a_{12} \\ a_{21}-\frac{1}{2} a_{22} & a_{22}\end{array}\right)$. $\text{B.}$ $\left(\begin{array}{ll}a_{11} & a_{12}+\frac{1}{2} a_{11} \\ a_{21} & a_{22}+\frac{1}{2} a_{21}\end{array}\right)$. $\text{C.}$ $\left(\begin{array}{ll}a_{11}-2 a_{12} & a_{12} \\ a_{21}-2 a_{22} & a_{22}\end{array}\right)$. $\text{D.}$ $\left(\begin{array}{ll}a_{11}+2 a_{12} & a_{12} \\ a_{21}+2 a_{22} & a_{22}\end{array}\right)$.

设 $A , B$ 均是 $n$ 阶矩阵,且 $A B = A + B$ ,则( ).
$\text{A.}$ $A - E$ 为可逆矩阵 $\text{B.}$ $A + E$ 为可逆矩阵 $\text{C.}$ $A -2 E$ 为可逆矩阵 $\text{D.}$ $B + E$ 为可逆矩阵

设 $A$ 是方阵,如有矩阵关系式 $A B = A C$ ,则必有( )
$\text{A.}$ $A =0$ $\text{B.}$ $B \neq C$ 时 $A =0$ $\text{C.}$ $A \neq 0$ 时 $B=C$ $\text{D.}$ $|A |\ne 0$ 时 $B = C$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。