单选题 (共 3 题 ),每题只有一个选项正确
设 $X_1, X_2$ 是来自总体 $X$ 的样本, 作为 $E X$ 的无偏估计中, 最有效的是
$\text{A.}$ $\frac{3}{5} X_1+\frac{2}{5} X_2$,
$\text{B.}$ $\frac{1}{4} X_1+\frac{3}{4} X_2$
$\text{C.}$ $\frac{1}{3} X_1+\frac{2}{3} X_2$
$\text{D.}$ $\frac{1}{2} X_1+\frac{1}{2} X_2$
设 $X_1, X_2, \cdots, X_n$ 是来自正态总体 $N\left(\mu, \sigma^2\right)$ 的简单随机样本, 其中 $\mu$ 为已知常数,记 $\bar{X}$ 和 $S^2$ 分别为样本均值和样本方差, 则下列统计量中与 $\bar{X}$ 不独立的是
$\text{A.}$ 样本标准差
$\text{B.}$ $\frac{1}{n} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2$
$\text{C.}$ $\frac{1}{n} \sum_{i=1}^n\left(X_i-\mu\right)^2$
$\text{D.}$ $X_1-X_2$
设随机变量 $X_1, X_2, \cdots, X_n$ 独立同分布, 且 $X_1$ 的 4 阶矩存在, 记 $E\left(X_1^k\right)=\mu_k(k=1,2,3,4)$,则由切比雪夫不等式, 对任意由 $\varepsilon>0$ 有 $P\left\{\left|\frac{1}{n} \sum_{i=1}^n X_i^2-\mu_2\right| \geq \varepsilon\right\} \leq $.
$\text{A.}$ $ \frac{\mu_4-\mu_2^2}{n \varepsilon^2}$
$\text{B.}$ $\frac{\mu_4-\mu_2^2}{\sqrt{n} \varepsilon^2}$
$\text{C.}$ $\frac{\mu_2-\mu_1^2}{n \varepsilon^2}$
$\text{D.}$ $\frac{\mu_2-\mu_1^2}{\sqrt{n} \varepsilon^2}$