积分比大小专题训练




一、单选题 (共 14 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $I_k=\int_0^{k \pi} e^{x^2} \sin x \mathrm{~d} x(k=1,2,3)$ ,则有
$\text{A.}$ $I_1 < I_2 < I_3$ $\text{B.}$ $I_3 < I_2 < I_1$ $\text{C.}$ $I_2 < I_3 < I_1$ $\text{D.}$ $I_2 < I_1 < I_3$

设 $$
\begin{aligned}
M & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x)^2}{1+x^2} \mathrm{~d} x, \\
N & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+x}{e^x} \mathrm{~d} x \\
K &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1+\sqrt{\cos x}) \mathrm{d} x ,
\end{aligned}
$$
则 $M, N, K$ 的大小关系为
$\text{A.}$ $M>N>K$ $\text{B.}$ $M>K>N$ $\text{C.}$ $K>M>N$ $\text{D.}$ $K>N>M$

记 $I=\int_0^1 \frac{\sin x}{x} \mathrm{~d} x, J=\int_0^1 \frac{\tan x}{x} \mathrm{~d} x$, 则
$\text{A.}$ $\sin 1>I$ $\text{B.}$ $I>1$ $\text{C.}$ $J < \tan 1$ $\text{D.}$ $J < 1$

设 $I_1=\int_0^\pi \mathrm{e}^{-x^2} \cos x \mathrm{~d} x, I_2=\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \mathrm{e}^{-x^2} \cos x \mathrm{~d} x, I_3=\int_\pi^{2 \pi} \mathrm{e}^{-x^2} \cos x \mathrm{~d} x$, 则
$\text{A.}$ $I_1 < I_2 < I_3$. $\text{B.}$ $I_3 < I_2 < I_1$. $\text{C.}$ $I_2 < I_3 < I_1$. $\text{D.}$ $I_2 < I_1 < I_3$.

$I_1=\int_0^1 \frac{x}{2(1+\cos x)} d x, I_2=\int_0^1 \frac{\ln 1+x}{1+\cos x} d x, I_3=\int_0^1 \frac{2 x}{1+\sin x} d x$, 则
$\text{A.}$ $I_1 < I_2 < I_3$ $\text{B.}$ $I_2 < I_3 < I_1$ $\text{C.}$ $I_1 < I_3 < I_2$ $\text{D.}$ $I_2 < I_1 < I_3$

设 $I_1=\int_0^{\frac{\pi}{2}} \sin (\sin x) \mathrm{d} x, I_2=\int_0^{\frac{\pi}{2}} \cos (\sin x) \mathrm{d} x$, 则
$\text{A.}$ $I_1 < 1 < I_2$. $\text{B.}$ $1 < I_1 < I_2$. $\text{C.}$ $I_2 < 1 < I_1$. $\text{D.}$ $I_1 < I_2 < 1$.

设 $0 < a < 1, I_1=\int_0^1 \frac{\mathrm{e}^{a x}-1}{\mathrm{e}^x-1} \mathrm{~d} x, I_2=\int_0^1 \frac{\sqrt{a x}+1}{\sqrt{x}+1} \mathrm{~d} x$, 则
$\text{A.}$ $I_1 < a < I_2$. $\text{B.}$ $I_2 < a < I_1$. $\text{C.}$ $a < I_1 < I_2$. $\text{D.}$ $I_1 < I_2 < a$.

设 $I_1=\int_0^{\frac{\pi}{4}} \frac{\tan x}{x} \mathrm{~d} x, I_2=\int_0^{\frac{\pi}{4}}\left(\frac{\tan x}{x}\right)^2 \mathrm{~d} x, I_3=\int_0^{\frac{\pi}{4}} \frac{\tan x^2}{x^2} \mathrm{~d} x$, 则有
$\text{A.}$ $I_1>I_2>I_3$ $\text{B.}$ $I_3>I_2>I_1$ $\text{C.}$ $I_2>I_1>I_3$ $\text{D.}$ $I_1>I_3>I_2$

设 $M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x)^2}{1+x^2} \mathrm{~d} x$,
$$
N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+x}{e^x} \mathrm{~d} x, K=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1+\sqrt{\cos x}) \mathrm{d} x ,
$$

则 $M, N, K$ 的大小关系为
$\text{A.}$ $M>N>K$ $\text{B.}$ $M>K>N$ $\text{C.}$ $K>M>N$ $\text{D.}$ $K>N>M$

已知 $I_1=\int_0^1 \frac{x}{2(1+\cos x)} \mathrm{d} x, I_2=\int_0^1 \frac{\ln (1+x)}{1+\cos x} \mathrm{~d} x$, $I_3=\int_0^1 \frac{2 x}{1+\sin x} \mathrm{~d} x$ ,则 $(\quad)$
$\text{A.}$ $I_1 < I_2 < I_3$ $\text{B.}$ $I_2 < I_1 < I_3$ $\text{C.}$ $I_1 < I_3 < I_2$ $\text{D.}$ $I_3 < I_2 < I_1$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。