0726-07

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 3 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设函数 $f(x)=x^{2}, 0 \leqslant x \leqslant 1$, 而
$$
S(x)=\sum_{n=1}^{\infty} b_{n} \sin n \pi x,-\infty < x < +\infty,
$$
其中 $b_{n}=2 \int_{0}^{1} f(x) \sin n \pi x \mathrm{~d} x, n=1,2,3, \cdots$, 则 $S\left(-\frac{1}{2}\right)$ 等于
$\text{A.}$ $-\frac{1}{2}$. $\text{B.}$ $-\frac{1}{4}$. $\text{C.}$ $\frac{1}{4}$. $\text{D.}$ $\frac{1}{2}$.

函数 $y=C_1 e^x+C_2 e^{-2 x}+x e^x$ 满足一个微分方程是
$\text{A.}$ $y^{\prime \prime}-y^{\prime}-2 y=3 x e^x$ $\text{B.}$ $y^{\prime \prime}-y^{\prime}-2 y=3 e^x$ $\text{C.}$ $y^{\prime \prime}+y^{\prime}-2 y=3 x e^x$ $\text{D.}$ $y^{\prime \prime}+y^{\prime}-2 y=3 e^x$

设非齐次线性微分方程 $y^{\prime}+P(x) y=Q(x)$ 有两个不同的解 $y_1(x), y_2(x), C$ 为任意常数,则该方程的通解是
$\text{A.}$ $C\left[y_1(x)-y_2(x)\right]$ $\text{B.}$ $y_1(x)+C\left[y_1(x)-y_2(x)\right]$ $\text{C.}$ $C\left[y_1(x)+y_2(x)\right]$ $\text{D.}$ $y_1(x)+C\left[y_1(x)+y_2(x)\right]$

二、填空题 (共 18 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $f(x)$ 是周期为 2 的周期函数, 它在区间 $(-1,1]$ 上的定义为
$$
f(x)= \begin{cases}2, & -1 < x \leqslant 0, \\ x^{3}, & 0 < x \leqslant 1,\end{cases}
$$
则 $f(x)$ 的傅里叶 (Fourier) 级数在 $x=1$ 处收敛于


设 $f(x)=\left\{\begin{array}{ll}-1, & -\pi < x \leqslant 0, \\ 1+x^{2}, & 0 < x \leqslant \pi,\end{array}\right.$ 则其以 $2 \pi$ 为周期的傅里叶级数在点 $x=\pi$ 处收敛于


设函数 $f(x)=\pi x+x^{2}(-\pi < x < \pi)$ 的傅里叶级数展开式为 $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$, 则其中系数 $b_{3}$ 的值为


级数 $\sum_{n=0}^{\infty} \frac{(\ln 3)^n}{2^n}$ 的和为


$\lim _{n \rightarrow \infty}\left(\frac{1}{n^2+n+1}+\frac{2}{n^2+n+2}+\cdots\right. \left.+\frac{n}{n^2+n+n}\right)=$


$\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n-1}=$


设 $x^2=\sum_{n=0}^{\infty} a_n \cos n x(-\pi \leq x \leq \pi)$ ,则 $a_2=$


微分方程 $\left(y+x^3\right) \mathrm{d} x-2 x \mathrm{~d} y=0$ 满足 $\left.y\right|_{x=1}=\frac{6}{5}$ 的特解为


方程 $x y^{\prime}+2 y=x \ln x$ 满足 $y(1)=-\frac{1}{9}$ 的解为


方程 $x y^{\prime}+2 y=x \ln x$ 满足 $y(1)=-\frac{1}{9}$ 的解为


微分方程 $x y^{\prime}+y=0$ 满足初始条件 $y(1)=2$ 的特解为


微分方程 $y^{\prime}=\frac{y(1-x)}{x}$ 的通解是


二阶常系数非齐次线性微分方程 $y^{\prime \prime}-4 y^{\prime}+3 y=2 e^{2 x}$的通解为 $y=$


二阶常系数非齐次线性微分方程 $y^{\prime \prime}-4 y^{\prime}+3 y=2 e^{2 x}$的通解为 $y=$


微分方程 $x y^{\prime}+y=0$ 满足条件 $y(1)=1$ 的解是 $y=$


微分方程 $x y^{\prime}+y=0$ 满足条件 $y(1)=1$ 的解是 $y=$


若二阶常系数线性齐次微分方程 $y^{\prime \prime}+a y^{\prime}+b y=0$ 的通解为 $y=\left(C_1+C_2 x\right) e^x$ ,则非齐次方程
$$
y^{\prime \prime}+a y^{\prime}+b y=x
$$

满足条件 $y(0)=2, y^{\prime}(0)=0$ 的解为 $y=$


设 $y=y(x)$ 是方程 $x y+e^y=x+1$ 确定的隐函数,则 $\left.\frac{\mathrm{d} y^2}{\mathrm{~d} x^2}\right|_{x=0}=$


三、解答题 ( 共 19 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
将函数 $f(x)=\arctan \frac{1+x}{1-x}$ 展开为 $x$ 的幕级数.



求级数 $\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(n^{2}-n+1\right)}{2^{n}}$ 的和.



将函数 $f(x)=\frac{1}{4} \ln \frac{1+x}{1-x}+\frac{1}{2} \arctan x-x$ 展开成 $x$ 的幂级数.



将函数 $f(x)=x-1(0 \leqslant x \leqslant 2)$ 展开成周期为 4 的余弦级数.



设 $x_{1}=10, x_{n+1}=\sqrt{6+x_{n}}(n=1,2, \cdots)$, 试证数列 $\left\{x_{n}\right\}$ 极限存在, 并求此极限.



将函数 $f(x)=\frac{1}{x^2-3 x+2}$ 展开成幂级数,并指出其收敛区间.



将函数 $y=\ln \left(1-x-2 x^2\right)$ 展成 $x$ 的幂级数,并指出其收敛区间.



设 $f(x)$ 是区间 $[0,1)$ 上单调减少且非负的连续函数,
$$
a_n=\sum_{k=1}^n f(k)-\int_1^n f(x) \mathrm{d} x(n=1,2, \cdots) .
$$

证明:数列 $\left\{a_n\right\}$ 的极限存在.



设 $f(x)=\left\{\begin{array}{ll}\frac{1+x^2}{x} \arctan x, & x \neq 0 \\ 1, & x=0\end{array}\right.$ ,将 $f(x)$ 展开成 $x$的幂级数,并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{1-4 n^2}$ 的和.



将函数 $f(x)=\arctan \frac{1-2 x}{1+2 x}$ 展开成 $x$ 的幂级数,并求级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2 n+1}$ 的和.



设 $f(x)=\int_x^{x+\frac{\pi}{2}}|\sin t| \mathrm{d} t$.
(1) 证明 $f(x)$ 是以 $\pi$ 为周期的周期函数;
(2) 求 $f(x)$ 的值域.



设 $f(u, v)$ 具有连续偏导数,且满足
$$
f_u^{\prime}(u, v)+f_v^{\prime}(u, v)=u v .
$$

求 $y(x)=e^{-2 x} f(x, x)$ 所满足的一阶微分方程,并求其通解.



设级数 $\frac{x^4}{2 \cdot 4}+\frac{x^6}{2 \cdot 4 \cdot 6}+\frac{x^8}{2 \cdot 4 \cdot 6 \cdot 8}+\cdots(-\infty < x$ $ < +\infty)$ 的和函数为 $S(x)$. 求:
(1) $S(x)$ 所满足的一阶微分方程;
(2) $S(x)$ 的表达式.



将函数 $f(x)=\frac{x}{2+x-x^2}$ 展开成 $x$ 的幂级数.



微分方程 $y^{\prime}=\frac{y(1-x)}{x}$ 的通解是



将函数 $f(x)=\frac{1}{x^2-3 x-4}$ 展开成 $x-1$ 的幂级数,并指出其收敛区间.



设 $f(x)$ 是连续函数,
(1) 利用定义证明函数 $F(x)=\int_0^x f(t) \mathrm{d} t$ 可导,$F^{\prime}(x)=f(x) ;$
(2) 当 $f(x)$ 是以 2 为周期的周期函数时,证明函数
$$
G(x)=2 \int_0^x f(t) \mathrm{d} t-x \int_0^2 f(t) \mathrm{d} t
$$

也是以 2 为周期的周期函数.



将函数 $f(x)=1-x^2(0 \leq x \leq \pi)$ 展开成余弦级数,并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.



设 $f(x)$ 是周期为 2 的连续函数,
(I ) 证明对任意实数 $t$ ,有 $\int_t^{t+2} f(x) \mathrm{d} x=\int_0^2 f(x) \mathrm{d} x$ ;
(ㅍ) 证明 $G(x)=\int_0^x\left[2 f(t)-\int_t^{t+2} f(s) \mathrm{d} s\right] \mathrm{d} t$ 是周期为 2 的周期函数.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。