科数网
试题 ID 280
【所属试卷】
1988年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
设 $f(x)$ 是周期为 2 的周期函数, 它在区间 $(-1,1]$ 上的定义为
$$
f(x)= \begin{cases}2, & -1 < x \leqslant 0, \\ x^{3}, & 0 < x \leqslant 1,\end{cases}
$$
则 $f(x)$ 的傅里叶 (Fourier) 级数在 $x=1$ 处收敛于
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f(x)$ 是周期为 2 的周期函数, 它在区间 $(-1,1]$ 上的定义为
$$
f(x)= \begin{cases}2, & -1 < x \leqslant 0, \\ x^{3}, & 0 < x \leqslant 1,\end{cases}
$$
则 $f(x)$ 的傅里叶 (Fourier) 级数在 $x=1$ 处收敛于
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见