科数网
题号:306    题型:单选题    来源:1989年全国硕士研究生招生统一考试数学试题及详细参考解答(数一)
设函数 $f(x)=x^{2}, 0 \leqslant x \leqslant 1$, 而
$$
S(x)=\sum_{n=1}^{\infty} b_{n} \sin n \pi x,-\infty < x < +\infty,
$$
其中 $b_{n}=2 \int_{0}^{1} f(x) \sin n \pi x \mathrm{~d} x, n=1,2,3, \cdots$, 则 $S\left(-\frac{1}{2}\right)$ 等于
$\text{A.}$ $-\frac{1}{2}$. $\text{B.}$ $-\frac{1}{4}$. $\text{C.}$ $\frac{1}{4}$. $\text{D.}$ $\frac{1}{2}$.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP