考研数学-0725-13-1

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 13 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知曲面 $z=4-x^{2}-y^{2}$ 上点 $P$ 处的切平面平行于平面 $2 x+2 y+z-1=0$, 则点 $P$ 的坐标是
$\text{A.}$ $(1,-1,2)$. $\text{B.}$ $(-1,1,2)$. $\text{C.}$ $(1,1,2)$. $\text{D.}$ $(-1,-1,2)$.

在曲线 $x=t, y=-t^{2}, z=t^{3}$ 的所有切线中, 与平面 $x+2 y+z=4$ 平行的切线
$\text{A.}$ 只有 1 条. $\text{B.}$ 只有 2条. $\text{C.}$ 至少 3条. $\text{D.}$ 不存在.

双纽线 $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$ 所围成的区域面积可用定积分表示为
$\text{A.}$ $2 \int_{0}^{\frac{\pi}{4}} \cos 2 \theta d \theta$ $\text{B.}$ $4 \int_{0}^{\frac{\pi}{4}} \cos 2 \theta d \theta$ $\text{C.}$ $2 \int_{0}^{\frac{\pi}{4}} \sqrt{\cos 2 \theta} d \theta$ $\text{D.}$ $\frac{1}{2} \int_{0}^{\frac{\pi}{4}}(\cos 2 \theta)^{2} d \theta$

设有直线 $L_{1}: \frac{x-1}{1}=\frac{y-5}{-2}=\frac{z+8}{1}$ 与 $L_{2}:\left\{\begin{array}{l}x-y=6 \\ 2 y+z=3\end{array}\right.$, 则 $L_{1}$ 与 $L_{2}$ 的夹角为 ( )
$\text{A.}$ $\frac{\pi}{6}$ $\text{B.}$ $\frac{\pi}{4}$ $\text{C.}$ $\frac{\pi}{3}$ $\text{D.}$ $\frac{\pi}{2}$

设有直线 $L:\left\{\begin{array}{l}x+3 y+2 z+1=0 \\ 2 x-y-10 z+3=0\end{array}\right.$ 及平面 $\pi: 4 x-2 y+z-2=0$, 则直线 $L(\quad)$
$\text{A.}$ 平行于 $\pi$. $\text{B.}$ 在 $\pi$ 上. $\text{C.}$ 垂直于 $\pi$. $\text{D.}$ 与 $\pi$ 斜交.

曲线 $y=x(x-1)(2-x)$ 与 $x$ 轴所围图形的面积可表示为
$\text{A.}$ $-\int_0^2 x(x-1)(2-x) \mathrm{d} x$ $\text{B.}$ $\int_0^1 x(x-1)(2-x) \mathrm{d} x-\int_1^2 x(x-1)(2-x) \mathrm{d} x$ $\text{C.}$ $-\int_0^1 x(x-1)(2-x) \mathrm{d} x+\int_1^2 x(x-1)(2-x) \mathrm{d} x$ $\text{D.}$ $\int_0^2 x(x-1)(2-x) \mathrm{d} x$

二元函数 $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^2+y^2}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$ 在点 $(0,0)$处
$\text{A.}$ 连续,偏导数存在 $\text{B.}$ 连续,偏导数不存在 $\text{C.}$ 不连续,偏导数存在 $\text{D.}$ 不连续,偏导数不存在

设 $f(x, y)$ 在点 $(0,0)$ 附近有定义,且 $f_x^{\prime}(0,0)=3$ , $f_y^{\prime}(0,0)=1$ ,则
$\text{A.}$ $\left.\mathrm{d} z\right|_{(0,0)}=3 \mathrm{~d} x+\mathrm{d} y$ $\text{B.}$ 曲面 $z=f(x, y)$ 在 $(0,0, f(0,0))$ 处的法向量为 $(3,1,1)$ $\text{C.}$ 曲线 $\left\{\begin{array}{l}z=f(x, y) \\ y=0\end{array}\right.$ 在 $(0,0, f(0,0))$ 处的切向量为 $(1,0,3)$ $\text{D.}$ 曲线 $\left\{\begin{array}{l}z=f(x, y) \\ y=0\end{array}\right.$ 在 $(0,0, f(0,0))$ 处的切向量为 $(3,0,1)$

考虑二元函数的下面 4 条性质:
(1) $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处连续,
(2) $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处的两个偏导数连续,
(3) $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处可微,
(4) $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处两个偏导数存在.

若用 " $P \Rightarrow Q$ " 表示可由性质 $P$ 推出 $Q$ ,则有
$\text{A.}$ (2) $\Rightarrow$ (3) $\Rightarrow$ (1) $\text{B.}$ (3) $\Rightarrow$ (2) $\Rightarrow$ (1) $\text{C.}$ (3) $\Rightarrow$ (4) $\Rightarrow$ (1) $\text{D.}$ (3) $\Rightarrow$ (1) $\Rightarrow$ (4)

设函数
$$
u(x, y)=\phi(x+y)+\phi(x-y)+\int_{x-y}^{x+y} \psi(t) \mathrm{d} t ,
$$

其中函数 $\phi$ 具有二阶导数, $\psi$ 具有一阶导数,则必有
$\text{A.}$ $\frac{\partial^2 u}{\partial x^2}=-\frac{\partial^2 u}{\partial y^2}$ $\text{B.}$ $\frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 u}{\partial y^2}$ $\text{C.}$ $\frac{\partial^2 u}{\partial x \partial y}=\frac{\partial^2 u}{\partial y^2}$ $\text{D.}$ $\frac{\partial^2 u}{\partial x \partial y}=\frac{\partial^2 u}{\partial x^2}$

设 $f(x, y)$ 与 $\varphi(x, y)$ 均为可微函数,且 $\varphi_y^{\prime}(x, y) \neq 0$ ,已知 $\left(x_0, y_0\right)$ 是 $f(x, y)$ 在约束条件 $\varphi(x, y)=0$ 下的一个极值点,下列选项正确的是
$\text{A.}$ 若 $f_x^{\prime}\left(x_0, y_0\right)=0$ ,则 $f_y^{\prime}\left(x_0, y_0\right)=0$ $\text{B.}$ 若 $f_x^{\prime}\left(x_0, y_0\right)=0$ ,则 $f_y^{\prime}\left(x_0, y_0\right) \neq 0$ $\text{C.}$ 若 $f_x^{\prime}\left(x_0, y_0\right) \neq 0$ ,则 $f_y^{\prime}\left(x_0, y_0\right)=0$ $\text{D.}$ 若 $f_x^{\prime}\left(x_0, y_0\right) \neq 0$ ,则 $f_y^{\prime}\left(x_0, y_0\right) \neq 0$

设 $A$ 为 3 阶实对称矩阵,如果二次曲面方程
$$
(x, y, z) A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=1
$$

在正交变换下的标准方程为双叶双曲面方程,则 $\boldsymbol{A}$ 的正特征值个数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

已知 $f(x, y)=e^{\sqrt{x^2+y^4}}$ ,则
$\text{A.}$ $f_x^{\prime}(0,0), f_y^{\prime}(0,0)$ 都存在 $\text{B.}$ $f_x^{\prime}(0,0)$ 不存在, $f_y^{\prime}(0,0)$ 存在 $\text{C.}$ $f_x^{\prime}(0,0)$ 不存在, $f_y^{\prime}(0,0)$ 不存在 $\text{D.}$ $f_x^{\prime}(0,0), f_y^{\prime}(0,0)$ 都不存在

二、填空题 (共 12 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
已知两条直线的方程是 $L_{1}: \frac{x-1}{1}=\frac{y-2}{0}=\frac{z-3}{-1}, L_{2}: \frac{x+2}{2}=\frac{y-1}{1}=\frac{z}{1}$, 则过 $L_{1}$ 且平行于 $L_{2}$ 的 平面方程是


曲面 $z-\mathrm{e}^{2}+2 x y=3$ 在点 $(1,2,0)$ 处的切平面方程为


设 $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=2$, 则 $[(\boldsymbol{a}+\boldsymbol{b}) \times(\boldsymbol{b}+\boldsymbol{c})] \cdot(\boldsymbol{c}+\boldsymbol{a})=$


设一平面经过原点及点 $(6,-3,2)$, 且与平面 $4 x-y+2 z=8$ 垂直, 求此平面方程。


设 $\left(x_0, y_0\right)$ 是抛物线 $y=a x^2+b x+c$ 上的一点,若在该点的切线过原点,则系数 $a, b, c$ 应满足的关系是


对数螺线 $\rho=e^\theta$ 在点 $(\rho, \theta)=\left(e^{\frac{\pi}{2}}, \frac{\pi}{2}\right)$ 处的切线的直角坐标方程为


设 $z=\frac{1}{x} f(x y)+y \varphi(x+y)$ ,其中 $f, \varphi$ 具有二阶连续导数,则 $\frac{\partial^2 z}{\partial x \partial y}=$


曲面 $x^2+2 y^2+3 z^2=21$ 在点 $(1,-2,2)$ 处的法线方程为


一个半球体状的雪堆,其体积融化的速率与半球面面积 $S$成正比,比例常数 $\boldsymbol{K}>0$. 假设在融化过程中雪堆始终保持半球体状,己知半径为 $r_0$ 的雪堆在开始融化的 3 小时内,融化了其体积的 $\frac{7}{8}$ ,问雪堆全部融化需要多少小时?


设 $z=e^{-x}-f(x-2 y)$ ,且当 $y=0$ 时, $z=x^2$ ,则 $\frac{\partial z}{\partial x}=$


设函数 $u(x, y, z)=1+\frac{x^2}{6}+\frac{y^2}{12}+\frac{z^2}{18}$ ,单位向量 $\vec{n}=\frac{1}{\sqrt{3}}(1,1,1)$ ,则 $\left.\frac{\partial u}{\partial n}\right|_{(1,2,3)}=$


点 $(2,1,0)$ 到平面 $3 x+4 y+5 z=0$ 的距离 $d=$


三、解答题 ( 共 15 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求椭球面 $x^2+2 y^2+3 z^2=21$ 上某点 $M$ 处的切平面 $\pi$ 的方程,使平面 $\pi$ 过已知直线
$$
L: \frac{x-6}{2}=\frac{y-3}{1}=\frac{2 z-1}{-2} .
$$



求曲面 $z=\frac{x^2}{2}+y^2$ 平行于平面 $2 x+2 y-z=0$ 的切平面方程.



设 $f(x, y)=\int_0^{x y} e^{-t^2} \mathrm{~d} t$ ,求
$\frac{x}{y} \frac{\partial^2 f}{\partial x^2}-2 \frac{\partial^2 f}{\partial x \partial y}+\frac{y}{x} \frac{\partial^2 f}{\partial y^2} .$



设直线 $L:\left\{\begin{array}{l}x+y+b=0 \\ x+a y-z-3=0\end{array}\right.$ 在平面 $\pi$ 上,而平面 $\pi$与曲面 $z=x^2+y^2$ 相切于点 $(1,-2,5)$ ,求 $a, b$ 之值.



设 $u=f(x, y, z)$ 有连续偏导数, $y=y(x)$ 和 $z=z(x)$分别由方程 $e^{x y}-y=0$ 和 $e^z-x z=0$ 所确定,求 $\frac{\mathrm{d} u}{\mathrm{~d} x}$.



求直线 $L: \frac{x-1}{1}=\frac{y}{1}=\frac{z-1}{-1}$ 在平面 $\pi: x-y+2 z$ $-1=0$ 上的投影直线 $L_0$ 的方程,并求 $L_0$ 绕 $y$ 轴旋转一周所成的曲面方程



设 $u=f(x, y, z)$ 有连续的一阶偏导数,又函数 $y=y(x)$及 $z=z(x)$ 分别由下列两式确定:
$$
\begin{aligned}
& e^{x y}-x y=2 \text { 和 } e^x=\int_0^{x-z} \frac{\sin t}{t} \mathrm{~d} t , \\
& \text { 求 } \frac{\mathrm{d} u}{\mathrm{~d} x} \text {. } \\
&
\end{aligned}
$$



已知曲线的极坐标方程是 $r=1-\cos \theta$ ,求该曲线上对应于 $\theta=\frac{\pi}{6}$ 处的切线与法线的直角坐标方程.



某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为 $k, k>0$ ). 汽锤第一次击打将桩打进地下 $a \mathrm{~m}$. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数 $r(0 < r < 1)$. 问
(1)汽锤击打桩 3 次后,可将桩打进地下多深?
(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注: $m$ 表示长度单位米.)



有一平底容器,其内侧壁是由曲线 $x=\varphi(y)(y \geq 0)$ 绕 $y$ 轴旋转而成的旋转曲面,容器的底面圆的半径为 2 m . 根据设计要求,当以 $3 \mathrm{~m}^3 / \mathrm{min}$ 的速率向容器内注入液体时,液面的面积将以 $\pi \mathrm{m}^2 / \mathrm{min}$ 的速率均匀扩大(假设注入液体前,容器内无液体).
(1) 根据 $t$ 时刻液面的面积,写出 $t$ 与 $\varphi(y)$ 之间的关系式;
(2)求曲线 $x=\varphi(y)$ 的方程. (注: m 表示长度单位米, $\min$表示时间单位分.)



设 $f(u, v)$ 具有二阶连续偏导数,且满足 $\frac{\partial^2 f}{\partial u^2}+\frac{\partial^2 f}{\partial v^2}=1$ ,又 $g(x, y)=f\left[x y, \frac{1}{2}\left(x^2-y^2\right)\right]$, 求 $\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}$.



某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞以增大阻力,使飞机迅速减速并停下.现有一质量为 9000 kg 的飞机,着陆时的水平速度为 $700 \mathrm{~km} / \mathrm{h}$. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比 (比例系数为 $k=6.0 \times 10^6$ ) 问从着陆点算起,飞机滑行的最长距离是多少? ( kg 表示千克, $\mathrm{km} / \mathrm{h}$ 表示千米 (小时).



如图, $C_1$ 和 $C_2$ 分别是 $y=\frac{1}{2}\left(1+e^x\right)$ 和 $y=e^x$ 的图象,过点 $(0,1)$ 的曲线 $C_3$ 是一单调增函数的图象. 过 $C_2$ 上任一点 $M(x, y)$ 分别作垂直于 $x$ 轴和 $y$ 轴的直线 $l_x$ 和 $l_y$. 记 $C_1, C_2$与 $l_x$ 所围图形的面积为 $S_1(x) ; C_2, C_3$ 与 $l_y$ 所围图形的面积为 $S_2(y)$. 如果总有 $S_1(x)=S_2(y)$ ,求曲线 $C_3$ 的方程 $x=\phi(y)$.



设 $f(u)$ 在 $(0,+\infty)$ 内具有二阶导数,且 $z=f\left(\sqrt{x^2+y^2}\right)$满足等式 $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$.
(1) 验证 $f^{\prime \prime}(u)+\frac{f^{\prime}(u)}{u}=0$
(2)若 $f(1)=0, f^{\prime}(1)=1$ ,求函数 $f(u)$ 的表达式.



在 $x O y$ 坐标平面上,连续曲线 $L$ 过点 $M(1,0)$ ,其上任意点 $P(x, y)(x \neq 0)$ 处的切线斜率与直线 $O P$ 的斜率之差等于 $a x$ (常数 $a>0$ ).
(I) 求 $L$ 的方程;
(ㅍ) 当 $L$ 与直线 $y=a x$ 所围成平面图形的面积为 $8 / 3$ 时,确定 $a$ 的值.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。