2025届考研数学高等数学部分仿真模拟

数学(二)

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 6 题 ),每题只有一个选项正确
设 $I_k=\int_0^{k \pi} \mathrm{e}^{x^2} \sin x \mathrm{~d} x(k=1,2,3)$, 则有
$\text{A.}$ $I_1 < I_2 < I_3$. $\text{B.}$ $I_3 < I_2 < I_1$. $\text{C.}$ $I_2 < I_3 < I_1$. $\text{D.}$ $I_2 < I_1 < I_3$.

设 $f(x), g(x)$ 是恒大于零的可导函数, 且 $f^{\prime}(x) g(x)-f(x) g^{\prime}(x) < 0$, 则当 $a < x < b$ 时, 有
$\text{A.}$ $f(x) g(b)>f(b) g(x)$ $\text{B.}$ $f(x) g(a)>f(a) g(x)$ $\text{C.}$ $f(x) g(x)>f(b) g(b)$ $\text{D.}$ $f(x) g(x)>f(a) g(a)$

已知 $f^{\prime}(x)=2^x(x \in R)$, 则 $f(x)$ 在 $R$ 上的一个原函数为
$\text{A.}$ $\frac{2^x}{\ln 2}$ $\text{B.}$ $\frac{2^x}{\ln ^2 2}$ $\text{C.}$ $2^x \ln 2$ $\text{D.}$ $2^x$

曲线 $y=\int_0^x \mathrm{e}^{-\sqrt{t}} \mathrm{~d} t$ 与 $y$ 轴及其 $x \rightarrow+\infty$ 方向的水平渐近线所围图形的面积为
$\text{A.}$ 4 $\text{B.}$ 8 $\text{C.}$ 12 $\text{D.}$ 16

设函数 $f(x, y)$ 连续, $f(0,0)=0$, 又设 $F(x, y)=|x-y| f(x, y)$, 则 $F(x, y)$ 在点 $(0,0)$处
$\text{A.}$ 连续; 但不可微. $\text{B.}$ 连续, 但偏导数不存在. $\text{C.}$ 偏导数存在, 但不可微. $\text{D.}$ 可微.

设函数 $y=y(x)$ 是微分方程 $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$ 的解, 在 $x=0$ 处 $y(x)$ 取得极值 4 , 且 $y^{\prime \prime}(0)=$ 0 , 则 $y(x)=$
$\text{A.}$ $\left(3-2 x^2\right) \mathrm{e}^x+\mathrm{e}^{-x}$. $\text{B.}$ $3 \mathrm{e}^x+x \mathrm{e}^{-x}$. $\text{C.}$ $(3-2 x) \mathrm{e}^x+\mathrm{e}^{-x}$. $\text{D.}$ $\mathrm{e}^x+(3-2 x) \mathrm{e}^{-x}$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷