单选题 (共 5 题 ),每题只有一个选项正确
函数 $f(x)=\left\{\begin{array}{ll}1+x^2 & x \leq 0 \\ x-2 & x>0\end{array}\right.$ 是
$\text{A.}$ 在 $(-\infty,+\infty)$ 单调增加函数
$\text{B.}$ 在 $(-\infty,+\infty)$ 单调减少函数
$\text{C.}$ 在 $(-\infty, 0)$ 单增 $(0,+\infty)$ 单减函数
$\text{D.}$ 在 $(-\infty, 0)$ 单减 $(0,+\infty)$ 单增函数
设周期函数 $f(x)$ 在 $(-\infty,+\infty)$ 内可导, 周期为 4 , 又 $\lim _{x \rightarrow 0} \frac{f(1)-f(1-x)}{2 x}=-1$,则曲线 $y=f(x)$ 在 $x=5$ 处切线斜率为
$\text{A.}$ $\frac{1}{2}$
$\text{B.}$ 0
$\text{C.}$ -1
$\text{D.}$ -2
设 $f(x)=x \sin \frac{1}{x}$, 则 $\lim _{x \rightarrow \infty} f(x)=$
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ $\infty$
$\text{D.}$ 不存在
设 $y=f(x)$ 可导, 则当 $\Delta x \rightarrow 0$ 时, $\Delta y-d y$ 是 $\Delta x$ 的
$\text{A.}$ 高阶无穷小
$\text{B.}$ 等价无穷小
$\text{C.}$ 同阶无穷小
$\text{D.}$ 低阶无穷小
微分方程 $\frac{d y}{d x}=\frac{y}{x}+\tan \frac{y}{x}$ 的通解是
$\text{A.}$ $\frac{1}{\sin \frac{y}{x}}=c x$
$\text{B.}$ $\sin \frac{y}{x}=x+c$
$\text{C.}$ $\sin \frac{y}{x}=c x$
$\text{D.}$ $\sin \frac{x}{y}=c x$
填空题 (共 6 题 ),请把答案直接填写在答题纸上
函数 $f(x)=\frac{x}{\tan x}, x=k \pi$ 和 $x=k \pi+\frac{\pi}{2} \quad$ ( $k$ 是整数 $)$ 是间断点, 其中无穷间 断点是 ________
$\lim _{x \rightarrow \infty}\left(\frac{x+2 a}{x-a}\right)^x=$
已知 $x=a(t-\sin t) ; y=a(1-\cos t)$; $\frac{d y}{d x}=$.
设 $\int f(x) d x=\sin 2 x+c$, 则 $f(x)=$
广义积分 $\int_2^{\infty} \frac{d x}{x^2+x-2}=$
求 $\int_{-1}^1\left(2 x+\sqrt{1-x^2}\right)^2 d x$
解答题 (共 8 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
计算极限 $\lim _{x \rightarrow 0} \frac{\int_0^{x^2} \cos x d x}{\ln \left(1+x^2\right)}$
设 $f(x)=e^{-x}$; 求 $\int \frac{f^{\prime}(\ln x)}{x} d x$
已知 $y=\left(1+x^2\right) \arctan x$, 求 $y^{\prime \prime}$
计算 $ \lim _{x \rightarrow 0} \frac{3 \sin x+x^2 \cos \frac{1}{x}}{(1+\cos x) \ln (1+x)}$
设抛物线 $f(x)=a x^2+b x+c$ 过点 $(0,0)$ 与 $(1,2)$ 且 $a < 0$, 确定 $a, b, c$ 使得抛 物线与 $x$ 轴所围图形面积最小。
求微分方程 $y^{\prime \prime}-5 y^{\prime}+6 y=x e^{2 x}$ 的通解
设 $b>a>0$, 证明: $\frac{b-a}{b} < \ln \frac{b}{a} < \frac{b-a}{a}$