解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求函数 $f(x, y)=x^2+2 y^2-x^2 y^2$ 在区域
$$
D=\left\{(x, y) \mid x^2+y^2 \leq 4, y \geq 0\right\}
$$
上的最大值和最小值。
设 $f(x)$ 是区间 $\left[0, \frac{\pi}{4}\right]$ 上的单调、可导函数,且满足
$$
\int_0^{f(x)} f^{-1}(t) \mathrm{d} t=\int_0^x t \frac{\cos t-\sin t}{\sin t+\cos t} \mathrm{~d} t
$$
其中 $f^{-1}$ 是 $f$ 的反函数,求 $f(x)$.
设函数 $f(x)$ 具有连续的一阶导数,且满足
$$
f(x)=\int_0^x\left(x^2-t^2\right) f^{\prime}(t) \mathrm{d} t+x^2 ,
$$
求 $f(x)$ 的表达式.