单选题 (共 6 题 ),每题只有一个选项正确
已知向量组 $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}$ 线性无关, 则向量组
$\text{A.}$ $ {\alpha}_{1}+ {\alpha}_{2}, {\alpha}_{2}+ {\alpha}_{3}, {\alpha}_{3}+ {\alpha}_{4}, {\alpha}_{4}+ {\alpha}_{1}$ 线性无关.
$\text{B.}$ $ {\alpha}_{1}- {\alpha}_{2}, {\alpha}_{2}- {\alpha}_{3}, {\alpha}_{3}- {\alpha}_{4}, {\alpha}_{4}- {\alpha}_{1}$ 线性无关.
$\text{C.}$ $ {\alpha}_{1}+ {\alpha}_{2}, {\alpha}_{2}+ {\alpha}_{3}, {\alpha}_{3}+ {\alpha}_{4}, {\alpha}_{4}- {\alpha}_{1}$ 线性无关.
$\text{D.}$ $ {\alpha}_{1}+ {\alpha}_{2}, {\alpha}_{2}+ {\alpha}_{3}, {\alpha}_{3}- {\alpha}_{4}, {\alpha}_{4}- {\alpha}_{1}$ 线性无关.
设有向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s ; \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t ; \boldsymbol{\gamma}$, 如果
$$
r\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s\right) < r\left(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t\right), r\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}\right)=r\left(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t, \boldsymbol{\gamma}\right)
$$
则下列说法中错误的是
$\text{A.}$ 向量 $\boldsymbol{\gamma}$ 不能被 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 线性表示, 但能被 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t$ 线性表示
$\text{B.}$ $r\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}\right)=r\left(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t\right)$
$\text{C.}$ 如果向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 线性无关, 则向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t$ 线性无关
$\text{D.}$ 如果向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 能被向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t$ 线性表示, 则向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t$ 能被 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}$ 线性表示
设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶可逆矩阵, 且满足 $\boldsymbol{A B}=\boldsymbol{A}+\boldsymbol{B}$, 则下面结论:
(1) $\boldsymbol{A}+\boldsymbol{B}$ 可逆;(2) $\boldsymbol{A B}=\boldsymbol{B A}$; (3) $\boldsymbol{A}-\boldsymbol{E}$ 可逆; (4) $(\boldsymbol{B}-\boldsymbol{E}) \boldsymbol{x}=\mathbf{0}$ 有非零解.
正确的共有
$\text{A.}$ 1 个.
$\text{B.}$ 2 个.
$\text{C.}$ 3 个.
$\text{D.}$ 4 个.
设 $\boldsymbol{A}$ 为三阶矩阵, $\boldsymbol{P}=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)$ 为可逆矩阵, 使得 $\boldsymbol{P}^{-1} \boldsymbol{A P}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right)$, 则 $\boldsymbol{A}^2\left(\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2+\right.$ $\left.\boldsymbol{\alpha}_3\right)$ 是
$\text{A.}$ $\boldsymbol{\alpha}_1+2 \boldsymbol{\alpha}_3$
$\text{B.}$ $\boldsymbol{\alpha}_2+2 \boldsymbol{\alpha}_3$
$\text{C.}$ $\boldsymbol{\alpha}_1+4 \boldsymbol{\alpha}_3$
$\text{D.}$ $\boldsymbol{\alpha}_2+4 \boldsymbol{\alpha}_3$
设非齐次线性方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_1$ 有解, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_2$ 无解, 对于任意常数 $k$, 必有
$\text{A.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=k \boldsymbol{\beta}_1+\boldsymbol{\beta}_2$ 一定有解
$\text{B.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=k \boldsymbol{\beta}_1+\boldsymbol{\beta}_2$ 一定无解
$\text{C.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_1+k \boldsymbol{\beta}_2$ 一定有解
$\text{D.}$ 方程组 $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\beta}_1+k \boldsymbol{\beta}_2$ 一定无解
设 $\boldsymbol{\beta}_1 、 \boldsymbol{\beta}_2$ 是非齐次线性方程组 $A X=\boldsymbol{b}$ 的两个不同解, $\boldsymbol{\alpha}_1 、 \boldsymbol{\alpha}_2$ 是对应的齐次线性 方程组 $A X=\mathbf{0}$ 的基础解系, $k_1 、 k_2$ 为任意常数, 则方程组 $A X=\boldsymbol{b}$ 的通解为
$\text{A.}$ $ \boldsymbol{x}=k_1 \boldsymbol{\alpha}_1+k_2\left(\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2\right)+\frac{1}{2}\left(\boldsymbol{\beta}_1-\boldsymbol{\beta}_2\right) $
$\text{B.}$ $ \boldsymbol{x}=k_1 \boldsymbol{\alpha}_1+k_2\left(\boldsymbol{\alpha}_1-\boldsymbol{\alpha}_2\right)+\frac{1}{2}\left(\boldsymbol{\beta}_1+\boldsymbol{\beta}_2\right) $
$\text{C.}$ $\boldsymbol{x}=k_1 \boldsymbol{\alpha}_1+k_2\left(\boldsymbol{\beta}_1-\boldsymbol{\beta}_2\right)+\frac{1}{2}\left(\boldsymbol{\beta}_1-\boldsymbol{\beta}_2\right) $
$\text{D.}$ $ \boldsymbol{x}=k_1 \boldsymbol{\alpha}_1+k_2\left(\boldsymbol{\beta}_1+\boldsymbol{\beta}_2\right)+\frac{1}{2}\left(\boldsymbol{\beta}_1+\boldsymbol{\beta}_2\right)$