一、单选题 (共 11 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义, 且 $\lim _{x \rightarrow 0} f(x)=0$, 则 ( )
$\text{A.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0, f(x)$ 在 $x=0$ 处可导.
$\text{B.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{x^2}}=0, f(x)$ 在 $x=0$ 处可导.
$\text{C.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0$.
$\text{D.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{x^2}}=0$.
设数列 $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ 与 $\{\mathrm{y_n}\}$ 满足 $\lim _{\mathrm{n} \rightarrow \infty} x_n y_n=0$, 则下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 发散, 则 $\left\{y_n\right\}$ 必发散
$\text{B.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{y_n\right\}$ 必收敛
$\text{C.}$ 若 $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ 有界,则 $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ 必为无穷小
$\text{D.}$ 若 $\left\{\frac{1}{\mathrm{x}_{\mathrm{n}}}\right\}$ 有界,则 $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ 必为无穷小
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上连续, 其导函数图形如图所示, 则 $f(x)$ 的极值点的个数为
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
若函数 $f(x)$ 在原点连续, $F(x)=f(x)|\sin x|$, 则 $f(0)=0$ 是 $F^{\prime}(0)$ 存在的
$\text{A.}$ 充要条件
$\text{B.}$ 充分但非必要条件
$\text{C.}$ 必要但非充分条件
$\text{D.}$ 既非充分也非必要条件
设 $g(t)$ 是正值连续函数, 且 $f(x)=\int_{-a}^a|x-t| g(t) \mathrm{d} t, a>0, x \in[-a, a]$, 关于曲线 $y=f(x)$, 下列说法正确的是
$\text{A.}$ 在 $[-a, 0]$ 上是凹的, 在 $[0, a]$ 上是凸的
$\text{B.}$ 在 $[-a, 0]$ 上是凸的, 在 $[0, a]$ 上是凹的.
$\text{C.}$ 在 $[-a, a]$ 上是凹的.
$\text{D.}$ 在 $[-a, a]$ 上是凸的.
设 $f(x)$ 在 $[0,+\infty)$ 上有连续导数, 且 $f(0)>0, f^{\prime}(x) \geqslant 0$, 若 $F(x)=f(x)+f^{\prime}(x)$, 则 $\int_0^{+\infty} \frac{1}{f(x)} \mathrm{d} x$ 收敛是 $\int_0^{+\infty} \frac{1}{F(x)} \mathrm{d} x$ 收敛的
$\text{A.}$ 必要非充分条件.
$\text{B.}$ 充分非必要条件.
$\text{C.}$ 充分必要条件.
$\text{D.}$ 既非充分也非必要条件.
已知 $f(x, y)$ 在点 $(0,0)$ 的某邻域内连续, 且 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)-x^k y}{\left(x^2+y^2\right)^2}=1$, 则
$\text{A.}$ $k=1$ 时, $(0,0)$ 是极小值点.
$\text{B.}$ $k=2$ 时, $(0,0)$ 是极大值点.
$\text{C.}$ $k=3$ 时, $(0,0)$ 是极小值点.
$\text{D.}$ $k=4$ 时, $(0,0)$ 是极大值点.
当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是:
$\text{A.}$ $\sqrt{1+\sqrt{x}}-1$
$\text{B.}$ $\ln \left(\frac{1+x}{1-\sqrt{x}}\right)$
$\text{C.}$ $1-e^{\sqrt{x}}$
$\text{D.}$ $1-\cos \sqrt{x}$
. 函数 $y=1-x^2$ 在区间 $[-1.1]$ 上应用罗尔定理时, 所得到的中值=
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ -1
$\text{D.}$ 2
设函数 $f(x)$ 具有三阶导数, 且 $\lim _{x \rightarrow 0} \frac{f(x)-1}{\mathbf{e}^{x^3}-1}=-\frac{1}{2}$, 则
$\text{A.}$ $(0,1)$ 是曲线 $y=f(x)$ 的拐点.
$\text{B.}$ $x=0$ 是函数 $f(x)$ 的极大值点.
$\text{C.}$ $x=0$ 是函数 $f(x)$ 的极小值点.
$\text{D.}$ 以上结论都不正确.
曲线 $\left\{\begin{array}{l}x^2+y^2+z^2=4, \\ x^2+y^2=2 x\end{array}\right.$ 在点 $(1,1, \sqrt{2})$ 处的法平面方程为
$\text{A.}$ $\sqrt{2} x-y=0$.
$\text{B.}$ $\sqrt{2} x-z=0$.
$\text{C.}$ $\sqrt{2} x-y=\sqrt{2}-1$.
$\text{D.}$ $\sqrt{2} x-z=\sqrt{2}-1$.
二、填空题 (共 13 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
$\lim _{x \rightarrow 0}\left[\frac{1}{e^x-1}-\frac{1}{\ln (1+x)}\right]=$
设 $\left\{\begin{array}{c}x=\sqrt{t^2+1} \\ y=\ln \left(t+\sqrt{t^2+1}\right)\end{array}\right.$, 则 $\left.\frac{d^2 y}{d x^2}\right|_{t=1}=$
已知 $f^{\prime}(1)=8$, 则 $\lim _{x \rightarrow 0} \frac{f\left(1-x^2\right)-f(1)}{1-\cos x}=$
设 $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\mathrm{e}^{\mathrm{x}}(\sin \mathrm{x}+\cos \mathrm{x}) & \mathrm{x} \geq 0 \\ \operatorname{b \arctan} \frac{1}{\mathrm{x}} & \mathrm{x} < 0\end{array}\right.$ 是连续函数, 则 $\mathrm{b}=$
设函数 $\mathrm{f}(\mathrm{x})$ 在 $(-\infty,+\infty)$ 上连续,求 $\frac{d}{d x} \int_0^x t f\left(t^2-x^2\right) d t $
已知函数 $f(x)=\left\{\begin{array}{lc}(1-x)^{\frac{1}{x}}, & x \neq 0 \\ a, & x=0\end{array}\right.$ 在 $x=0$ 处连续, 则 $a=$
已知方程 $\mathrm{e}^x=k x$ 有且仅有一个实根, 则 $k$ 的取值范围为
在区间 $[0,1]$ 上, $f^{\prime \prime}(x)>0$ ,写出 $f^{\prime}(0), f^{\prime}(1), f(1)-f(0)$ 的大小关系
设函数 $y=f(x)$ 的参数方程为 $x=e^{-t}-1, y=t^2$ ,当 $-1 < x < 0$ 时,判断 $y=f(x)$ 的单调性和凹凸性
设函数 $y(x)$ 由参数方程 $\left\{\begin{array}{l}x=\ln \left(1+\mathrm{e}^t\right) \text {, } \\ y=-t^2+3\end{array}\right.$ 确定, 则曲线 $y=y(x)$ 在参数 $t=0$ 对应的点处的曲率 $k=$
设函数 $y=y(x)$ 由参数方程 $\left\{\begin{array}{l}x=\frac{3 t}{1+t^3}, \\ y=\frac{3 t^2}{1+t^3}\end{array}\right.$ 确定, 则曲线 $y=y(x)$ 的斜渐近线方程为
设 $f_0(x), f_1(x)$ 是 $[0,1]$ 上的正值连续函数,满足:
$$
\begin{array}{r}
\int_0^1 f_0(x) \mathrm{d} x \leq \int_0^1 f_1(x) \mathrm{d} x . \\
\text { 设 } f_{n+1}=\frac{2 f_n^2(x)}{f_n(x)+f_{n-1}(x)},(n=1,2, \cdots) .
\end{array}
$$
证明: 序列 $a_n=\int_0^1 f_n(x) \mathrm{d} x,(n=1,2, \cdots)$ 单调递增且收敛.
(1) $a_{n+1}-a_n=e^{-a_n}, a_0=1$, 证明 $a_n-\ln n$ 收敛.
(2) 设 $f(x)$ 为单调递增函数, 且 $f^{\prime}(x)$ 有界,
$$
f(\mathbf{0})=\mathbf{0}, \lim _{x \rightarrow+\infty} f(x)=+\infty .
$$
设 $\boldsymbol{F}(x)=\int_0^x f(x) \mathrm{d} x$ ,数列 $\left\{a_n\right\}$ 满足:
$$
a_0=1, a_{n+1}=a_n+\frac{1}{f\left(a_n\right)}, b_n=F^{-1}(n) .
$$
证明: $\lim _{n \rightarrow \infty}\left(a_n-b_n\right)=\mathbf{0}$.
三、解答题 ( 共 16 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $f(x)$ 的二阶导函数连续, 且 $\lim _{x \rightarrow 0} \frac{f(x)+\cos x}{x^2}=1$, 求 $f(0), f^{\prime}(0), f^{\prime \prime}(0)$.
设曲线 $x=y^2(y>0), x=2-y^2(y>0)$ 及 $y=0$ 围成一平面图形 D.
(1) 求平面图形 D 的面积;
(2) 求平面图形 D 绕 $y$ 轴旋转一周而成的立体的体积
(1) 设 $f(x)$ 在 $[a, b]$ 上连续,证明: $\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$
(2) 在 (1) 的条件下,若 $x=\frac{a+b}{2}$ 为 $f(x)$ 的对称轴
证明: $\int_a^b x f(x) d x=\frac{a+b}{2} \int_a^b f(x) d x$
设 $f(x)$ 在 $[0,1]$ 上连续, $(0,1)$ 内可导, $\left|f^{\prime}(x)\right| \leq 1, f(0)=f(1)$证明: $\forall x_1, x_2 \in[0,1],\left|f\left(x_1\right)-f\left(x_2\right)\right| \leq \frac{1}{2}$
对函数 $e^{x^2}$ 在 $[0, x](x>0)$ 上应用积分中值定理,有 $\int_0^x e^{t^2} d t=x e^{\theta(x) x^2}$其中 $\theta(x) \in(0,1)$ ,计算 $\lim _{x \rightarrow+\infty} \theta(x)$
设 $f(x)$ 在 $[a, b]$ 上连续, 在 $(a, b)$ 内可导且 $f^{\prime}(x) \neq 0$
证明: $\exists \xi, \eta \in(a, b)$ ,使得 $\frac{f^{\prime}(\xi)}{f^{\prime}(\eta)}=\frac{e^b-e^a}{b-a} e^{-\eta}$
将函数 $\tan x$ 在点 $x=0$ 处展为带皮亚诺余项的三阶泰勒公式.
设曲线段 $\widehat{A B}$ 是由函数 $y=f(x)$ 在 $x \in[0,1]$ 上给出, 其中 $A=(0, f(0)), B=$ $(1, f(1)), f(x)$ 在 $[0,1]$ 上连续可微. 证明: 在 $\overparen{A B}$ 上存在一点 $P(\xi, f(\xi)), \xi \in[0,1]$, 使得 $P$ 点处的切线 $L$ 夹在平行直线 $x=0$ 和 $x=1$ 之间的线段长度恰巧等于 $\overparen{A B}$ 的弧长.
设函数 $f(x)$ 可微, 曲线 $y=f(x)$ 在点 $(1, f(1))$ 处的切线方程为 $y=x-1$, 求极限
$$
\lim _{x \rightarrow 0} \frac{\int_0^x \mathrm{e}^t f\left(1+\mathrm{e}^x-\mathrm{e}^t\right) \mathrm{d} t}{1-\sqrt{1+3 x^2}}
$$
设 $f(x)$ 在 $(-\infty,+\infty)$ 上连续, 记 $F(x)=\frac{1}{x} \int_0^x f(t) \mathrm{d} t$.
(1) 证明: 若对 $\forall a, b>0$, 有 $f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{2}[f(a)+f(b)]$, 则必有
$$
F\left(\frac{a+b}{2}\right) \leqslant \frac{1}{2}[F(a)+F(b)]
$$
(2) 反之, 若对 $\forall a, b>0$, 有 $F\left(\frac{a+b}{2}\right) \leqslant \frac{1}{2}[F(a)+F(b)]$, 是否必有
$$
f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{2}[f(a)+f(b)]
$$
请给出你的证明或反例.
设函数 $f(x)$ 在 $[0,+\infty)$ 上可导, $\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x} < 1$ 且 $\int_0^1 f(x) \mathrm{d} x>\frac{1}{2}$. 证明:
(I) 存在 $\xi \in(0,+\infty)$, 使得 $f(\xi)=\xi$;
(II) 存在与 (I) 中 $\xi$ 相异的点 $\eta \in(0,+\infty)$, 使得 $f^{\prime}(\eta)=1$.
设数列满足条件: $\left|a_{n+1}-a_n\right| < r^n, n=1,2, \cdots$, 其中 $r \in(0,1)$.求证 $\left\{a_n\right\}$ 收敛.
对给定的 $y$ 值, 方程 $x-\alpha \cdot \sin x=y(0 < \alpha < 1)$ 有唯一解
设数列 $\left\{x_n\right\}$ 满足: $x_1>0, x_n e^{x_{n+1}}=e^{x_n}-1(n=1,2, \cdots)$ 证明: $\left\{x_n\right\}$ 收敛, 并求 $\lim _{n \rightarrow \infty} x_n$.
若 $f(x)$ 为 $[0,1]$ 上的单调增加的连续函数, 证明:
$$
\frac{\int_0^1 x f^3(x) d x}{\int_0^1 x f^2(x) d x} \geq \frac{\int_0^1 f^3(x) d x}{\int_0^1 f^2(x) d x} .
$$
证明: $\int_0^1\left(1+\sin \frac{\pi}{2} x\right)^n \mathrm{~d} x>\frac{2^{n+1}-1}{n+1} \quad(n=1,2, \cdots)$;
(2) 求极限 $\lim _{n \rightarrow \infty}\left[\int_0^1\left(1+\sin \frac{\pi}{2} x\right)^n \mathrm{~d} x\right]^{\frac{1}{n}}$ 。