单选题 (共 6 题 ),每题只有一个选项正确
$x \rightarrow 0^{+}$时, 下列无穷小量的阶数从低到高的排序是
① 由 $\left\{\begin{array}{l}x=t^3 \\ y=t^2\end{array}\right.$ 确定的函数 $y=f(x)$
②$\ln \left(-x+\sqrt{1+x^2}\right)$
③$\int_0^{\sin x} \ln \left(1+\sqrt{t^2}\right) \mathrm{d} t$
④$\frac{1-\cos \sqrt{x}}{\sqrt[4]{x}}$
$\text{A.}$ ①④②③
$\text{B.}$ ②④①③
$\text{C.}$ ①④③②
$\text{D.}$ ④②①③
2. 如果一个二元函数 $f(x, y)$ 可以写为一个关于 $x$ 的函数 $g(x)$ 乘以一个关于 $y$ 的函数 $h(y)$, 也就是 $f(x, y)=g(x) h(y)$ 的形式, 我们把符合这样的情况的函数叫做 “二元函数 $f(x, y)$ 关于变量 $x, y$ 可分离”, 假定下列的函数中 $f(x, y)$ 具有二阶连续偏导数, 则下列说法中不正确的是 ( )
①. 若 $f(x, y)=x y \mathrm{e}^{x+y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
②. 若 $f(x, y)=(x+y) \mathrm{e}^{x y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
③. 若 $f(x, y)>0$ 并且 $\frac{\partial^2(\ln f(x, y))}{\partial x \partial y}=0$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
④. 若 $f(x, y)>0$ 并且满足 $\frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial y}=\frac{\partial^2 f}{\partial x \partial y} \cdot f(x, y)$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
$\text{A.}$ ②
$\text{B.}$ ①③④
$\text{C.}$ ②④
$\text{D.}$ ①③
设 $f(x) =|x^3- 1 |g(x)$, 其中$g(x)$连续,则$g(1)=0$是$f(x)$在$x=1$处可导的$\left(\quad\right)$.
$\text{A.}$ 充分条件
$\text{B.}$ 必要条件
$\text{C.}$ 充分必要条件
$\text{D.}$ 非充分非必要条件
当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是
$\text{A.}$ $1-\mathrm{e}^{\sqrt{x}}$.
$\text{B.}$ $\sqrt{1+\sqrt{x}}-1$.
$\text{C.}$ $\ln \frac{1+x}{1-\sqrt{x}}$.
$\text{D.}$ $1-\cos \sqrt{x}$.
下列命题中正确的是
$\text{A.}$ 若函数 $f(x)$ 在 $x=x_0$ 处不可导, 则 $f(x)$ 在 $x=x_0$ 处不连续.
$\text{B.}$ 若函数 $f(x)$ 在 $x=x_0$ 处不连续, 则 $f_{-}^{\prime}\left(x_0\right), f_{+}^{\prime}\left(x_0\right)$ 中至少有一个不存在.
$\text{C.}$ 若 $f_{-}^{\prime}\left(x_0\right), f_{+}^{\prime}\left(x_0\right)$ 存在, 则函数 $f(x)$ 在 $x=x_0$ 处可导.
$\text{D.}$ 若函数 $f(x)$ 在 $x=x_0$ 处连续, 则 $f(x)$ 在 $x=x_0$ 处左可导并且右可导.
设 $f(x)$ 在点 $x=a$ 的某个邻域内有定义, 则 $f(x)$ 在 $x=a$ 处可导的一个充分条件是
$\text{A.}$ $\lim _{h \rightarrow+\infty} h\left[f\left(a+\frac{1}{h}\right)-f(a)\right]$ 存在.
$\text{B.}$ $\lim _{h \rightarrow 0} \frac{f(a+2 h)-f(a+h)}{h}$ 存在.
$\text{C.}$ $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}$ 存在.
$\text{D.}$ $\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}$ 存在.