科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

考2

数学

一、单选题 (共 6 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $1 < x < 3$, 则极限 $\lim _{n \rightarrow \infty} \sqrt[n]{2024+x^n+x^{2 n}+\frac{1}{3^n} x^{3 n}}=$
$\text{A.}$ 1 $\text{B.}$ $x$. $\text{C.}$ $x^2$. $\text{D.}$ $\frac{x^3}{3}$.


设函数 $f(x)$ 在 $(0,+\infty)$ 内可导, 则下列命题中, 正确的个数是
(1) 若 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$.
(2) 若 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
(3) 若 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限.
(4) 若 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限.
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内单调有界, $\left\{x_n\right\}$ 为数列, 下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{B.}$ 若 $\left\{x_n\right\}$ 单调, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{C.}$ 若 $\left\{f\left(x_n\right)\right\}$ 收敛, 则 $\left\{x_n\right\}$ 收敛. $\text{D.}$ 若 $\left\{f\left(x_n\right)\right\}$ 单调, 则 $\left\{x_n\right\}$ 收敛.


当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是
$\text{A.}$ $1-\mathrm{e}^{\sqrt{x}}$. $\text{B.}$ $\sqrt{1+\sqrt{x}}-1$. $\text{C.}$ $\ln \frac{1+x}{1-\sqrt{x}}$. $\text{D.}$ $1-\cos \sqrt{x}$.


设函数$f(x)$在$R$上处处有定义,且$f(0)=0$,则下列命题错误的是
$\text{A.}$ 当 $x \rightarrow 0$ 时,若 $f(x) \sim \sin ^2 x$, 则 $f^{\prime}(0)$ 存在. $\text{B.}$ 若 $0 \leqslant f(x) \leqslant \sin ^2 x$ 恒成立, 则 $f^{\prime}(0)$ 存在. $\text{C.}$ 若在 $[0,+\infty)$ 上 $g(x) \leqslant f(x) \leqslant h(x)$, 在 $(-\infty, 0)$ 上 $h(x) \leqslant f(x) \leqslant g(x)$, 且当 $x \rightarrow 0$时, 函数 $g(x)$ 和 $h(x)$ 都是 $x$ 的同阶无穷小, 则 $f(x)$ 也是 $x$ 的同阶无穷小. $\text{D.}$ 当 $x \rightarrow 0$ 时,若 $f^{\prime}(0)$ 存在且不为 0 ,则 $f(x)$ 是 $x$ 的同阶无穷小.


设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$ $\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$ $\text{C.}$ $f^{\prime}(0)=1$ $\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$


二、填空题 (共 12 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $f(x)=\int_1^x \frac{\ln (1+t)}{t} \mathrm{~d} t(x>0)$, 则 $f(2)+f\left(\frac{1}{2}\right)=$



$\lim _{n \rightarrow \infty} n\left[\mathrm{e}\left(1+\frac{1}{n}\right)^{-n}-1\right]=$



已知函数 $f(x)$ 是周期为 $\pi$ 的奇函数, 且当 $x \in\left[0, \frac{\pi}{2}\right]$ 时, $f(x)=\lim _{n \rightarrow \infty} \sqrt[n]{\sin ^n x+\left(\frac{2 x}{\pi}\right)^n}$,则 $\int_0^\pi f(x) d x=$



设 $f(x)=a \int_0^{\sin x}\left(e^{t^2}-1\right) \mathrm{d} t, x^b \ln (1+x)$ 是 $g(x)$ 的一个原函数, 若 $x \rightarrow 0$ 时, $f(x)$ 与 $g(x)$ 是等价无穷小, 则 $a+b=$



$\lim _{x \rightarrow 0} \frac{e^{(1+x)^{\frac{1}{x}}}-(1+x)^{\frac{e}{x}}}{x^2}$



$\lim _{x \rightarrow 0} \frac{e^{(1+x)^{\frac{1}{x}}}-(1+x)^{\frac{e}{x}}}{x^2}$



已知函数 $f(x)$ 在 $x=0$ 的某邻域内可导, 且 $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x^2}+\frac{f(x)}{x}\right)=2$, 试求 $f(0), f^{\prime}(0), \lim _{x \rightarrow 0} \frac{x}{f(x)+\mathrm{e}^x}$



当 $x \rightarrow \infty$ 时, $\left[\frac{e}{\left(1+\frac{1}{x}\right)^x}\right]^x-\sqrt{e}$ 与 $c \cdot x^k$ 是等价无穷小, 求 $c$ 与 $k$ 的值分别为 ________ .



设函数 $f(x)$ 在点 $x=0$ 可导, 且 $f(0)=0, f^{\prime}(0)=2$, 则 $\lim _{x \rightarrow 0} \frac{f(1-\cos x)}{(\arctan x)^2}=$



设 $f(x)$ 在 $[1,+\infty)$ 上具有连续导数, $f(1)=1, g(x)$ 为 $f(x)$ 的反函数, 且满足 $\int_1^{f(x)} g(t) \mathrm{d} t=$ $x \ln x$, 则在 $[1,+\infty)$ 上 $f(x)=$



$\lim _{x \rightarrow 0}\left(\frac{1}{x \arctan 2 x}-\frac{1}{2 \sin ^2 x}\right)=$



设 $a>0, \lim _{x \rightarrow \infty} \frac{x \sqrt{a \mathrm{e}^{2|x|}+\mathrm{e}^{|x|}}-a(x+\ln |x|) \mathrm{e}^{|x|}}{\sqrt{x^2+\ln |x|} \mathrm{e}^{|x|}}$ 存在, 则 $a=$



三、解答题 ( 共 22 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
$\lim _{x \rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1-\tan x}}{\sin x}$.



 

$\lim _{n \rightarrow \infty}\left[\cos \left(\pi \sqrt{n^2+1}\right)\right]^2$.



 

$\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n !}}{n}$.



 

设 $f(x)$ 是 $(0,+\infty)$ 的单调增加函数,且存在极限
$\lim _{n \rightarrow \infty} a_n=+\infty, \lim _{n \rightarrow \infty} f\left(a_n\right)=A .$

证明: $\lim _{x \rightarrow+\infty} f(x)=A$.



 

设 $y=y(x)$ 为微分方程满足初值问题 $\left\{\begin{array}{l}\left(1-x^2\right) y^{\prime \prime}-x y^{\prime}=0, \\ y(0)=0, y^{\prime}(0)=1\end{array}\right.$ 的解, 求极限 $\lim _{x \rightarrow \frac{\sqrt{2}}{2}} \frac{y^2(x)-\frac{\pi^2}{16}}{2 x^2-1}$.



 

计算 $\lim _{x \rightarrow 0} \frac{(1+x)^{\frac{1}{x}}-(1+2 x)^{\frac{1}{2 x}}}{\sin x}$



 

$\lim _{x \rightarrow 0}\left[\cos \left(x \mathrm{e}^x\right)-\ln (1-x)-x\right]^{\cot x^3} .$



 

$\lim _{x \rightarrow+\infty}\left(\frac{1}{x} \cdot \frac{a^x-1}{a-1}\right)^{\frac{1}{x}}(a>0, a \neq 1) .$



 

$\lim _{x \rightarrow+\infty}\left[\frac{\ln \left(x+\sqrt{x^2+1}\right)}{\ln \left(x+\sqrt{x^2-1}\right)}\right]^{x^2 \ln x}$



 

求极限 $\lim _{n \rightarrow+\infty}\left(\sqrt[n]{n^2+1}-1\right) \cdot \sin \left(\frac{n \pi}{2}\right)$.



 

求极限: $\lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{\int_0^x \frac{\ln (1+x y)}{y} \mathrm{~d} y}$.



 

求函数 $z=f(x, y)=\left(1+\mathrm{e}^y\right) \cos x-y \mathrm{e}^y$ 的极值.



 

求函数极限: $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x \cdot(1+x)^{\frac{1}{2}}}-\frac{1}{e x}\right)$.



 

设 $f(x, y)=\left\{\begin{array}{l}\frac{|x|^a|y|^a}{x^2+y^2}, x^2+y^2 \neq 0 \\ 0, x^2+y^2=0\end{array}\right.$ ,证明:
(1) 当 $a>1$ 时, $f(x, y)$ 在点 $(0,0)$ 处连续.
(2) 当 $a>\frac{3}{2}$ 时, $f(x, y)$ 在点 $(0,0)$ 处可微.



 

利用麦克劳林公式求极限 $\lim _{x \rightarrow 0} \frac{\cos x-\mathrm{e}^{-\frac{x^2}{2}}}{x^4}$.



 

计算 $ \lim _{x \rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}$



 

设 $f(x)=\left\{\begin{array}{l}\sin x, x>0 \\ a+x^2, x \leq 0\end{array}\right.$, 问 $a$ 为何值时 $\lim _{x \rightarrow 0} f(x)$ 存在? 极限值为多少?



 

已知 $\lim _{x \rightarrow 1} \frac{a x^2+x-3}{x-1}=b$, 求常数 $a, b$ 的值.



 

求极限 $\lim _{n \rightarrow \infty} \dfrac{1+\frac{1}{2}+\cdots+\frac{1}{n^2-1}+\frac{1}{n^2}}{n \ln n}$



 

求极限 $\lim _{n \rightarrow \infty} n^2\left(n \sin \frac{1}{n}-1\right)$



 

求极限 $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+\tan ^2 x}-\sqrt{\cos x}}{x \sin x}$



 

求极限 $\lim _{n \rightarrow \infty}\left(b^{\frac{1}{n}}-1\right) \sum_{i=0}^{n-1} b^{\frac{i}{n}} \sin b^{\frac{2 i+1}{2 n}}(b>1)$.



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与