一、单选题 (共 6 题,每小题 5 分,共 50 分,每题只有一个选项正确)
原点关于直线 $\frac{x}{2}=\frac{y+1}{1}=\frac{z-4}{-2}$ 的对称点为
$\text{A.}$ $(-4,0,4)$
$\text{B.}$ $(4,0,4)$
$\text{C.}$ $(-4,0,-4)$
$\text{D.}$ $(4,0,-4)$
设封闭曲面 $\Sigma_1: x^2+y^2+z^2=1, \Sigma_2: x^2+2 y^2+z^2=1, \Sigma_3:(x-1)^2+y^2+z^2=1, \Sigma_4: x^2+y^2+$ $(z-1)^2=1$ 均取外侧, 则第二类曲面积分 $I_i=\iint_{\Sigma_i} 4 \mathrm{~d} y \mathrm{~d} z+y z \mathrm{~d} z \mathrm{~d} x+3 x^2 \mathrm{~d} x \mathrm{~d} y(i=1,2,3,4)$ 中, 最大的是
$\text{A.}$ $I_1$.
$\text{B.}$ $I_2$.
$\text{C.}$ $I_3$.
$\text{D.}$ $I_4$.
设 $D$ 是以 $A(1,1), B(-1,1), C(-1,-1)$ 为三顶点的三角形, 则 $I=$ $\iint_D\left[\sin (x y) \sqrt{x^2+3 y^2+1}+3 x+3 y\right] \mathrm{d} x \mathrm{~d} y=$
$\text{A.}$ 4
$\text{B.}$ 3
$\text{C.}$ 2
$\text{D.}$ 0
下列数项级数哪个发散?
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$
$\text{B.}$ $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$
$\text{C.}$ $\sum_{n=1}^{\infty} \ln \frac{n^2+1}{n^2}$
$\text{D.}$ $\sum_{n=1}^{\infty} \frac{3^n n !}{n^n}$
已知平面区域 $D_1=\left\{(x, y) \left\lvert\, 0 \leqslant y \leqslant x \leqslant \frac{\pi}{2}\right.\right\}, D_2=\left\{(x, y) \left\lvert\, 0 \leqslant x \leqslant y \leqslant \frac{\pi}{2}\right.\right\}$, $D_3=\left\{(x, y) \left\lvert\, \frac{\pi}{2} \leqslant x \leqslant y \leqslant \pi\right.\right\}$, 记 $I_1=\iint_{D_1} \mathrm{e}^{-x^2} \sin y \mathrm{~d} x \mathrm{~d} y, I_2=\iint_{D_2} \mathrm{e}^{-x^2} \sin y \mathrm{~d} x \mathrm{~d} y$, $I_3=\iint_{D_3} \mathrm{e}^{-x^2} \sin y \mathrm{~d} x \mathrm{~d} y$, 则
$\text{A.}$ $I_3 < I_1 < I_2$.
$\text{B.}$ $I_3 < I_2 < I_1$.
$\text{C.}$ $I_1 < I_3 < I_2$.
$\text{D.}$ $I_1 < I_2 < I_3$.
已知曲面 $z=4-x^2-y^2$ 上点 $P$ 处的切平面平行于平面 $2 x+2 y+z-1=0$, 则点 $P$ 的坐标是
$\text{A.}$ $(1,-1,2)$
$\text{B.}$ $(-1,1,2)$
$\text{C.}$ $(1,1,2)$
$\text{D.}$ $(-1,-1,2)$
二、填空题 (共 4 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $r=(x, y, z), r=\sqrt{x^2+y^2+z^2}$, 函数 $f(x)$ 可微, 曲线 $L$ 是一条有限的、不经过坐标原点的单侧光滑曲面 $S$ 的边界曲线, $L$ 的正向与曲面 $S$ 的正向符合右手法则, 则 $\oint_{\text {L. }} \frac{x}{r} f(r) \mathrm{d} x+\frac{y}{r} f(r) \mathrm{d} y+\frac{z}{r} f(r) \mathrm{d} z=$
圆 $x^2+y^2=3$ 上到点 $(0,0),(2,0),(0,1)$ 的距离的平方和最小的点为
设区域 $D=\left\{(x, y) \mid y \geqslant x^2-2, y \leqslant x \leqslant 1\right\}$, 则二重积分 $\iint_D x\left(2 \mathrm{e}^y-\mathrm{e}^{-y}\right) \mathrm{d} x \mathrm{~d} y=$
三、解答题 ( 共 7 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
已知 $S$ 是空间曲线 $\left\{\begin{array}{l}x^2+3 y^2=1, \\ z=0\end{array}\right.$ 绕 $y$ 轴旋转生成的椭球面的 上半部分 $(z \geq 0)$ , 取上侧, $\Pi$ 是 $S$ 在 $P(x, y, z)$ 点处的切平面, $\rho(x, y, z)$ 是原点到切平面 $\Pi$ 的距离, $\lambda, \mu, v$ 表示 $S$ 的正法向的方 向余弦,计算:
(1) $\iint_S \frac{z}{\rho(x, y, z)} \mathrm{d} S$;
(2) $\iint_S z(\lambda x+3 \mu y+v z) \mathrm{d} S$.
计算三重积分 $I=\iiint_{\Omega} \frac{\mathrm{d} V}{\left(1+x^2+y^2+z^2\right)^2}$ ,其中 $\Omega$ 为 $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
将 $f(x)=1-x^2(0 \leq x \leq \pi)$ 展开成余弦级数,并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ 的和。
设曲面 $\Sigma$ 由直线段 $L:\left\{\begin{array}{l}x=\frac{\sqrt{2}}{2}(t-1), \\ y=\frac{\sqrt{2}}{2}(t+1), \\ z=t\end{array},(0 \leqslant t \leqslant 1)\right.$ 绕 $z$ 轴旋转一周得到, 空间区域 $\Omega$ 由 $\Sigma$ 与平面 $z=0, z=1$ 所围成, 求 $\Omega$ 的形心.
求曲线积分
$I=\int_C x \ln \left(x^2+y^2-1\right) \mathrm{d} x+y \ln \left(x^2+y^2-1\right) \mathrm{d} y .$
其中 $C$ 是被积函数定义域内从 $(2,0)$ 到 $(0,2)$ 的逐段光滑曲线.
设 $f(x, y)=\left\{\begin{array}{l}\frac{x^2 y}{\sqrt{x^2+y^2}}, x^2+y^2 \neq 0 \\ 0 \quad, x^2+y^2=0\end{array}\right.$ ,求二阶偏导数 $f_{x y}^{\prime \prime}$.
(I) 求 $y=x \sin x$ 在 $[0, n \pi]$ ( $n$ 为正整数)上与 $x$ 轴所围的面积 $A_n$;
(II) 在(I)的基础上, 求幂级数 $\sum_{n=1}^{\infty} \frac{A_n}{2^n} x^n$ 的收敛域及和函数.