一、单选题 (共 2 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $f^{\prime}\left(x_0\right)=0, f^{\prime \prime}\left(x_0\right) < 0$, 则必定存在一个 $\delta>0$, 使得
$\text{A.}$ 函数 $y=f(x)$ 在 $\left(x_0-\delta, x_0\right]$ 单调增加, 在 $\left[x_0, x_0+\delta\right)$ 单调减少.
$\text{B.}$ 函数 $y=f(x)$ 在 $\left(x_0-\delta, x_0\right]$ 单调减少,在 $\left[x_0, x_0+\delta\right)$ 单调增加.
$\text{C.}$ 函数 $y=f(x)$ 在 $\left(x_0-\delta, x_0+\delta\right)$ 内是凸的.
$\text{D.}$ 函数 $y=f(x)$ 在 $\left(x_0-\delta, x_0+\delta\right)$ 内是凹的.
设函数 $y(x)=\lim _{t \rightarrow 0}\left[1-\frac{\ln (1-t)}{x^2}\right]^{\frac{x}{\operatorname{lin} t}}$, 下列关于曲线 $y=y(x)$ 的渐近线的说法中, 正确的是
(1) 该曲线无渐近线.
(2) 该曲线有铅直渐近线.
(3) 该曲线有水平渐近线.
(4) 该曲线有斜渐近线.
$\text{A.}$ (2).
$\text{B.}$ (3).
$\text{C.}$ (2)(3).
$\text{D.}$ (2)(4).
二、填空题 (共 6 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $y=y(x)$ 由 $\left\{\begin{array}{l}x=3 t^2+2 t+3, \\ y=\mathrm{e}^y \sin t+1\end{array}\right.$ 所确定, 则曲线 $y=y(x)$ 在 $t=0$ 对应的点 处的曲率 $k=$
设 $\lim _{x \rightarrow 0} \frac{\ln \left(1-2 x^3\right)+x f(x)}{x^6}=3$, 则 $\lim _{x \rightarrow 0} \frac{f(x)-2 x^2}{x^5}=$
$I=\lim _{x \rightarrow 0} \frac{1}{x^2}\left\{\ln \left(1+2 x-x^2\right)-6\left[(1+x)^{\frac{1}{3}}-1\right]\right\}=$
$\lim _{x \rightarrow 0} \frac{\left(\cos x-\mathrm{e}^{x^2}\right) \sin x^2}{\frac{x^2}{2}+1-\sqrt{1+x^2}}=$
抛物线 $y=x^2-x$ 在点 $(1,0)$ 处的曲率是:
三、解答题 ( 共 8 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $b>a>e$, 证明 $a^{b}>b^{a}$.
讨论方程 $f(x)=1-x+\frac{x^2}{2}-\frac{x^3}{3}+\cdots+(-1)^n \frac{x^n}{n}=0$ ( $n$ 为正整数) 有几个实根.
分析: 对于方程根的存在性问题, 往往需要对其进行分类讨论; 分别是 $x$ 的分类 讨论和 $n$ 的分类讨论.
设 $f(x)$ 在 $(a, b)$ 上可导,且已知
$$
x_1, x_2 \in(a, b), x_1 < x_2 \text { 且 } f^{\prime}\left(x_1\right) f^{\prime}\left(x_2\right) < 0 .
$$
证明: 存在 $\xi \in\left(x_1, x_2\right)$ ,使得 $f^{\prime}(\xi)=0$.
求函数 $y=\sqrt{8+x^3}$ 的导数和微分, 并利用微分计算 $\sqrt{8+(2.001)^3}$ 的近似值
设函数 $f(x)$ 在区间 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0)=0, f(1)=2$. 证明: 存在两两互异的点 $\xi_1, \xi_2, \xi_3 \in(0,1)$, 使得 $f^{\prime}\left(\xi_1\right) f^{\prime}\left(\xi_2\right) \sqrt{1-\xi_3} \geq 2$.
设 $f(x)$ 在 $[0,1]$ 上二阶连续可微, 且存在 $M>0$, 使得 $\left|f^{\prime \prime}(x)\right| \leq M, x \in[0,1]$. 又设 $f(x)$ 在 $(0,1)$ 内可取到最大值. 证明: $\left|f^{\prime}(0)\right|+\left|f^{\prime}(1)\right| \leq M$.
设 $f(x)$ 在 $[0,1]$ 上连续,在 $(0,1)$ 内二阶可导,且 $\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=1, \lim _{x \rightarrow 1^{-}} \frac{f(x)}{x-1}=2$. 证明:
(1) 存在 $c \in(0,1)$, 使得 $f(c)=0$;
(2) 存在 $\xi \in(0,1)$, 使得 $f^{\prime \prime}(\xi)=f(\xi)$;
(3) 存在 $\eta \in(0,1)$, 使得 $f^{\prime \prime}(\eta)-3 f^{\prime}(\eta)+2 f(\eta)=0$.