科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

高等数学18

数学

设函数 $f(x)=\left\{\begin{array}{ll}1, & |x| \leq 1, \\ 0, & |x|>1,\end{array}\right.$ 则 $f[f(x)]=$ (  )



积分 $\int_{0}^{2} d x \int_{x}^{2} e^{-y^{2}} d y$ 的值等于



设 $\left\{\begin{array}{l}x=1+t^{2}, \\ y=\cos t,\end{array}\right.$ 则 $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=$



由方程 $x y z+\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{2}$ 所确定的函数 $z=z(x, y)$ 在点 $(1,0,-1)$ 处的全微分 $\mathrm{d} z=$



已知两条直线的方程是 $L_{1}: \frac{x-1}{1}=\frac{y-2}{0}=\frac{z-3}{-1}, L_{2}: \frac{x+2}{2}=\frac{y-1}{1}=\frac{z}{1}$, 则过 $L_{1}$ 且平行于 $L_{2}$ 的 平面方程是



已知当 $x \rightarrow 0$ 时, $\left(1+a x^{2}\right)^{\frac{1}{3}}-1$ 与 $\cos x-1$ 是等价无穷小, 则常数 $a=$



设函数 $y=y(x)$ 由方程 $\mathrm{e}^{x+y}+\cos (x y)=0$ 确定, 则 $\frac{\mathrm{d} y}{\mathrm{~d} x}=$



函数 $u=\ln \left(x^{2}+y^{2}+z^{2}\right)$ 在点 $M(1,2,-2)$ 处的梯度 $\left.\operatorname{grad} u\right|_{M}=$



设 $f(x)=\left\{\begin{array}{ll}-1, & -\pi < x \leqslant 0, \\ 1+x^{2}, & 0 < x \leqslant \pi,\end{array}\right.$ 则其以 $2 \pi$ 为周期的傅里叶级数在点 $x=\pi$ 处收敛于



函数 $F(x)=\int_{1}^{x}\left(2-\frac{1}{\sqrt{t}}\right) d t(x>0)$ 的单调减少区间为



由曲线 $\left\{\begin{array}{l}3 x^{2}+2 y^{2}=12, \\ z=0\end{array}\right.$ 绕 $y$ 轴旋转一周得到的旋转面在点 $(0, \sqrt{3}, \sqrt{2})$ 处的指向外侧 的单位法向量为



设函数 $f(x)=\pi x+x^{2}(-\pi < x < \pi)$ 的傅里叶级数展开式为 $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$, 则其中系数 $b_{3}$ 的值为



设数量场 $u=\ln \sqrt{x^{2}+y^{2}+z^{2}}$, 则 $\operatorname{div}(\operatorname{grad} u)=$



$\lim _{x \rightarrow 0} \cot x\left(\frac{1}{\sin x}-\frac{1}{x}\right)=$



曲面 $z-\mathrm{e}^{2}+2 x y=3$ 在点 $(1,2,0)$ 处的切平面方程为



设 $u=\mathrm{e}^{-x} \sin \frac{x}{y}$, 则 $\frac{\partial^{2} u}{\partial x \partial y}$ 在点 $\left(2, \frac{1}{\pi}\right)$ 处的值为



设区域 $D$ 为 $x^{2}+y^{2} \leqslant R^{2}$, 则 $\iint_{D}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right) \mathrm{d} x \mathrm{~d} y=$



$\lim _{x \rightarrow 0}(1+3 x)^{\frac{2}{\sin x}}=$



$\frac{\mathrm{d}}{\mathrm{d} x} \int_{x^{2}}^{0} x \cos \left(t^{2}\right) \mathrm{d} t=$



设 $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=2$, 则 $[(\boldsymbol{a}+\boldsymbol{b}) \times(\boldsymbol{b}+\boldsymbol{c})] \cdot(\boldsymbol{c}+\boldsymbol{a})=$



幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^{n}+(-3)^{n}} x^{2 n-1}$ 的收敛半径 $R=$



解答题 ( 共 ### 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求 $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-\sin x-1}{1-\sqrt{1-x^{2}}}$.



 

设 $z=f\left(\mathrm{e}^{x} \sin y, x^{2}+y^{2}\right)$, 其中 $f$ 具有二阶连续偏导数, 求 $\frac{\partial^{2} z}{\partial x \partial y}$.



 

设 $f(x)=\left\{\begin{array}{ll}1+x^{2}, & x \leqslant 0, \\ \mathrm{e}^{-x}, & x>0,\end{array}\right.$ 求 $\int_{1}^{3} f(x-2) \mathrm{d} x$.



 

设 $\left\{\begin{array}{l}x=\cos \left(t^{2}\right), \\ y=t \cos \left(t^{2}\right)-\int_{1}^{t^{2}} \frac{1}{2 \sqrt{u}} \cos u \mathrm{~d} u,\end{array}\right.$ 求 $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ 在 $t=\sqrt{\frac{\pi}{2}}$ 的值.



 

将函数 $f(x)=\frac{1}{4} \ln \frac{1+x}{1-x}+\frac{1}{2} \arctan x-x$ 展开成 $x$ 的幂级数.



 

求 $\int \frac{\mathrm{d} x}{\sin 2 x+2 \sin x}$.



 

设函数 $f(x)$ 在区间 $[0,1]$ 上连续, 并设 $\int_{0}^{1} f(x) \mathrm{d} x=A$, 求 $\int_{0}^{1} \mathrm{~d} x \int_{x}^{1} f(x) f(y) \mathrm{d} y$.



 

计算曲面积分 $\iint_{\Sigma} z \mathrm{~d} S$, 其中 $\Sigma$ 为椎面 $z=\sqrt{x^{2}+y^{2}}$ 在柱体 $x^{2}+y^{2} \leqslant 2 x$ 内的部分.



 

试卷二维码

分享此二维码到群,让更多朋友参与