解答题 (共 10 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求函数极限: $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x \cdot(1+x)^{\frac{1}{2}}}-\frac{1}{e x}\right)$.
求定积分: $I=\int_0^{2024} \frac{x}{e^{2024-x}+e^x} \mathrm{~d} x$.
设椭圆 $\frac{x^2}{4}+\frac{y^2}{9}=1$ 在 $A\left(1, \frac{3 \sqrt{3}}{2}\right)$ 点的切线交 $y$ 轴于 $B$ 点,设 $L$ 为从 $A$ 到 $B$ 的直线段,试计算曲线积分:
$I=\int_L\left(\frac{\sin y}{x+1}-\sqrt{3} y\right) \mathrm{d} x+[\cos y \cdot \ln (x+1)+2 \sqrt{3} x-\sqrt{3}] \mathrm{d} y$
讨论 $\int_0^{+\infty} \frac{\sin x}{x^{p-1}+\frac{1}{x}} \mathrm{~d} x,(p \geq 0)$ 的条件收敛和绝对收敛性.
求函数 $f(x)=\int_0^x \frac{\ln (1+2 t)}{t} \mathrm{~d} t$ 的麦克劳林级数级数.
令 $F(x)=-\frac{1}{2}\left(1+\frac{1}{e}\right)+\int_{-1}^1|x-t| e^{-t^2} \mathrm{~d} t$, 讨论方程 $\boldsymbol{F}(x)=0$ 在闭区间 $[-1,1]$ 上实数根的个数.
设 $f(x, y)=\left\{\begin{array}{l}\frac{|x|^a|y|^a}{x^2+y^2}, x^2+y^2 \neq 0 \\ 0, x^2+y^2=0\end{array}\right.$ ,证明:
(1) 当 $a>1$ 时, $f(x, y)$ 在点 $(0,0)$ 处连续.
(2) 当 $a>\frac{3}{2}$ 时, $f(x, y)$ 在点 $(0,0)$ 处可微.
证明: 函数项级数 $\sum_{n=1}^{\infty} \frac{x^2}{\left(1+x^2\right)^n}$ 在 $(-\infty,+\infty)$ 上点点收敛,但并非一致收敛.
(1) 已知 $\lim _{x \rightarrow+\infty}[f(x)-(a x+b)]=0$.求 $a, b$.
(2) 设函数 $f(x)$ 在 $[a,+\infty)$ 上一致连续,设函数 $g(x)$在 $[a,+\infty)$ 上连续,且 $\lim _{x \rightarrow+\infty}[f(x)-g(x)]=0$. 证明: 函数 $g(x)$ 在 $[a,+\infty)$ 上一致连续.
(3) 用 (2) 的结论说明: $f(x)=\frac{1}{x}+\ln \left(1+e^x\right)$ 在区间 $[1,+\infty)$ 上一致连续.
(4) 设函数 $f(x)$ 在区间 $(-\infty,+\infty)$ 上可导,且存在常数 $a_1, a_2, b_1, b_2,\left(a_1 < a_2\right)$ ,使得
$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left[f(x)-\left(a_1 x+b_1\right)\right]=0 \\
& \lim _{x \rightarrow+\infty}\left[f(x)-\left(a_2 x+b_2\right)\right]=0
\end{aligned}
$$
证明:对任意的 $c \in\left(a_1, a_2\right)$ ,存在 $\xi \in(-\infty,+\infty)$ ,使得
$$
f^{\prime}(\xi)=c .
$$
(1) 证明: 狄利克雷积分 $\int_0^{+\infty} \frac{\sin (\alpha x)}{x} \mathrm{~d} x$ 在不含数值 $\alpha=0$ 的每一个闭区间 $[a, b]$ 上一致收敛,在每一个包含数值 $\alpha=0$ 的闭区间 $[a, b]$ 上非一致收敛.
(2) 已知 $\int_0^{+\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2}$ ,求 $F(x)=\int_0^{+\infty} \frac{\sin ^2(x t)}{t^2} \mathrm{~d} t$ ,其中 $\boldsymbol{x}>\mathbf{0}$.