高等数学基础题2

数 学



单选题 (共 3 题 ),每题只有一个选项正确
设 $f(x)=\left\{\begin{array}{cc}x^2, & x \leqslant 0, \\ x^2+x, & x>0 .\end{array}\right.$ 则( )
$\text{A.}$ $f(-x)=\left\{\begin{array}{cc}-x^2, & x \leqslant 0, \\ -\left(x^2+x\right), & x>0 .\end{array}\right.$ $\text{B.}$ $f(-x)=\left\{\begin{array}{cc}-\left(x^2+x\right), & x < 0, \\ -x^2, & x \geqslant 0 .\end{array}\right.$ $\text{C.}$ $f(-x)=\left\{\begin{array}{cc}x^2, & x \leqslant 0, \\ x^2-x, & x>0 .\end{array}\right.$ $\text{D.}$ $f(-x)=\left\{\begin{array}{cc}x^2-x, & x < 0, \\ x^2, & x \geqslant 0 .\end{array}\right.$

已知 $\lim _{x \rightarrow \infty}\left(\frac{x^2}{x+1}-a x-b\right)=0$ ,其中 $a, b$ 是常数,则 $\delta$
$\text{A.}$ $a=1, b=1$ $\text{B.}$ $a=-1, b=1$ $\text{C.}$ $a=1, b=-1$ $\text{D.}$ $a=-1, b=-1$

若 $y=\sin f\left(x^2\right), f(u)$ 一阶可导,则 $d y=()$
$\text{A.}$ $\cos f\left(x^2\right) d x$ $\text{B.}$ $f^{\prime}\left(x^2\right) \cos f\left(x^2\right) d x$ $\text{C.}$ $2 x f^{\prime}\left(x^2\right) \cos f\left(x^2\right) d x$ $\text{D.}$ $2 x^2 f^{\prime}\left(x^2\right) \cos f\left(x^2\right) d x$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。