单选题 (共 3 题 ),每题只有一个选项正确
设 $f(1)=0, f^{\prime}(1)=a$, 则极限 $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 f\left( e ^{x^2}\right)}-\sqrt{1+f\left(1+\sin ^2 x\right)}}{\ln \cos x}$ 为
$\text{A.}$ $a$
$\text{B.}$ $-a$
$\text{C.}$ $3 a$
$\text{D.}$ $-3 a$
设有二元方程 $x^2+y^2-y+\ln (1+x y)=1$ ,根据隐函数存在定理,存在点 $(1,0)$ 的一个邻域,在此邻域内该方程
$\text{A.}$ 既能确定一个具有连续导数的隐函数 $y=y(x)$ ,也能确定一个具有连续导数的隐函数 $x=x(y)$ .
$\text{B.}$ 既不能确定一个具有连续导数的隐函数 $y=y(x)$ ,也不能确定一个具有连续导数的隐函数 $x=x(y)$ .
$\text{C.}$ 不能确定一个具有连续导数的隐函数 $y=y(x)$ ,但可以确定一个具有连续导数的隐函数 $x=x(y)$ .
$\text{D.}$ 可以确定一个具有连续导数的隐函数 $y=y(x)$ ,但不能确定一个具有连续导数的隐函数 $x=x(y)$.
已知 $f(x)=\frac{\ln \left(1+x^3\right)}{x-|\ln (1+x)|} \cdot \frac{ e ^{\frac{1}{x-1}}+ e ^{x-1}}{ e ^{\frac{1}{x-1}}- e ^{x-1}}$ ,则下列说法正确的是 $(\quad)$ .
$\text{A.}$ $f(x)$ 有一个跳跃间断点,一个可去间断点和一个无穷间断点
$\text{B.}$ $F_1(x)=\left\{\begin{array}{ll}f(x), & x \neq 0 \text { 且 } x \neq 1, \\ 1, & x=0 \text { 或 } x=1\end{array}\right.$ 在闭区间 $\left[-\frac{1}{2}, \frac{3}{2}\right]$ 上有界
$\text{C.}$ $F_1(x)=\left\{\begin{array}{ll}f(x), & x \neq 0 \text { 且 } x \neq 1, \\ 1, & x=0 \text { 或 } x=1\end{array}\right.$ 在开区间 $\left(-\frac{1}{2}, \frac{3}{2}\right)$ 内不可积
$\text{D.}$ 记 $F(x)=\int_0^x f(t) d t$ ,则 $F(x)$ 在开区间 $\left(-1, \frac{1}{2}\right)$ 内可导