单选题 (共 3 题 ),每题只有一个选项正确
已知 $f(x)$ 在 $x=0$ 的某个领域内连续, 且 $f(0)=0, \lim _{x \rightarrow 0} \frac{f(x)}{1-\cos x}=2$, 则在点 $x=0$ 处
$\text{A.}$ 不可导
$\text{B.}$ 可导, 且 $f^{\prime}(0)=0$
$\text{C.}$ 取得极大值
$\text{D.}$ 取得极小值
设对任意的 $x$ ,总有 $\varphi(x) \leq f(x) \leq g(x)$ , 且 $\lim _{x \rightarrow \infty}[g(x)-\varphi(x)]=0$ ,则 $\lim _{x \rightarrow \infty} f(x)$
$\text{A.}$ 存在且等于零
$\text{B.}$ 存在但不一定为零
$\text{C.}$ 一定不存在
$\text{D.}$ 不一定存在
以下四个命题中,正确的是
$\text{A.}$ 若 $f^{\prime}(x)$ 在 $(0,1)$ 内连续,则 $f(x)$ 在 $(0,1)$ 内有界
$\text{B.}$ 若 $f(x)$ 在 $(0,1)$ 内连续,则 $f(x)$ 在 $(0,1)$ 内有界
$\text{C.}$ 若 $f^{\prime}(x)$ 在 $(0,1)$ 内有界,则 $f(x)$ 在 $(0,1)$ 内有界
$\text{D.}$ 若 $f(x)$ 在 $(0,1)$ 内有界,则 $f^{\prime}(x)$ 在 $(0,1)$ 内有界