单选题 (共 6 题 ),每题只有一个选项正确
微分方程 $x y^{\prime}-y \ln y=0$ 的通解是
$\text{A.}$ $y=e^{c x}$
$\text{B.}$ $y=c x$
$\text{C.}$ $y=e^x+c$
$\text{D.}$ $y=e^x+c x$
设方程 $\ln x=k x$ 只有两个正实根, 则 $k$ 的取值范围为
$\text{A.}$ $(-\infty, e)$
$\text{B.}$ $\left(0, \frac{1}{\mathrm{e}}\right)$
$\text{C.}$ $\left(\frac{1}{\mathrm{e}},+\infty\right)$
$\text{D.}$ $\left(\frac{1}{\mathrm{e}}, 1\right)$
微分方程 $y^{\prime \prime}+2 y^{\prime}-3 y=\mathrm{e}^x$ 的通解为
$\text{A.}$ $C_1 \mathrm{e}^{-3 x}+C_2 \mathrm{e}^x-\frac{1}{4} \mathrm{e}^x$.
$\text{B.}$ $C_1 \mathrm{e}^{-3 x}+C_2 \mathrm{e}^x-\frac{1}{4} x \mathrm{e}^x$.
$\text{C.}$ $C_1 \mathrm{e}^{-3 x}+C_2 \mathrm{e}^x+\frac{1}{4} \mathrm{e}^x$.
$\text{D.}$ $C_1 \mathrm{e}^{-3 x}+C_2 \mathrm{e}^x+\frac{1}{4} x \mathrm{e}^x$.
已知 $\left(a x y^3-y^2 \cos x\right) d x+\left(1+b y \sin x+3 x^2 y^2\right) d y$ 为某二元函数的全微分, 则 $a$ 和 $b$ 的 值分别为
$\text{A.}$ $-2$ 与 $2$
$\text{B.}$ $-3$ 与 $3$
$\text{C.}$ $2$ 与 $-2$
$\text{D.}$ $3$ 与 $-3$
已知 $y=\frac{x}{\ln x}$ 是微分方程 $y^{\prime}=\frac{y}{x}+\varphi\left(\frac{x}{y}\right)$ 的解, 则 $\varphi\left(\frac{x}{y}\right)$ 的表达式为
$\text{A.}$ $-\frac{y^2}{x^2}$.
$\text{B.}$ $\frac{y^2}{x^2}$.
$\text{C.}$ $-\frac{x^2}{y^2}$.
$\text{D.}$ $\frac{x^2}{y^2}$.
微分方程 $2(x y+x) y^{\prime}=y$ 的通解是
$\text{A.}$ $y=C e^{2 x}$
$\text{B.}$ $y^2=C e^{2 x}$
$\text{C.}$ $y^2 e^{2 y}=C x$
$\text{D.}$ $e^{2 y}=C x y$