考研数学
重点科目
其它科目

科数网

1试卷具体名称

数 学

单选题 (共 6 题 ),每题只有一个选项正确
微分方程 $\frac{ d y}{d x}=\frac{1}{x-y^2}$ 满足条件 $y(2)=0$ 的特解是
$\text{A.}$ $x= e ^y+y^2+2 y+2$. $\text{B.}$ $x= e ^y+y^2+2 y$. $\text{C.}$ $x=y^2+2 y+2$. $\text{D.}$ $x= e ^y+1$.

在下列微分方程中,以 $y=C_1 e ^x+C_2 \cos 2 x+C_3 \sin 2 x, \quad\left(C_1, C_2, C_3\right.$ 为任意常数 $)$ 为通解的是
$\text{A.}$ $y^{\prime \prime \prime}+y^{\prime \prime}-4 y^{\prime}-4 y=0$ $\text{B.}$ $y^{\prime \prime \prime}+y^{\prime \prime}+4 y^{\prime}+4 y=0$ $\text{C.}$ $y^{\prime \prime \prime}-y^{\prime \prime}-4 y^{\prime}+4 y=0$ $\text{D.}$ $y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=0 \text {. }$

下列方程中, ________ 是齐次方程。
$\text{A.}$ $\frac{d y}{y^2-2 x y}=\frac{d x}{x^2-x y+y^2}$ $\text{B.}$ $y^{\prime}=\frac{1}{x-y^2}$ $\text{C.}$ $(2 x-y+3) d y=(x-2 y+1) d x$ $\text{D.}$ $\frac{x}{2+y} d y=\frac{y}{2+x} d x$

若函数 $y=x e^x$ 是方程 $F\left(x, y, y^{\prime}\right)=0$ 解, 则 $y=x e^x+C$ (C为任意常数)
$\text{A.}$ 是 $F(x, y, y)=0$ 的通解 $\text{B.}$ 是 $F\left(x, y, y^{\prime}\right)=0$ 的特解 $\text{C.}$ 不是 $F(x, y, y)=0$ 的通解 $\text{D.}$ 不能确定是否为 $F\left(x, y, y^{\prime}\right)=0$ 的解

设 $k$ 为任意常数, 微分方程 $y^{\prime}=2 x \tan y$ 的通解是

$\text{A.}$ $-\ln \sin y=x^2+k$ $\text{B.}$ $\quad \sin y=k e^{z^2} \quad(k \neq 0)$ $\text{C.}$ $\ln \sin y=k x^2$ $\text{D.}$ $\ln k \sin y=x^2(k>0)$

下列微分方程中:一阶线性微分方程的个数是( ).
(1)$(x y+1) d x-x d y=0$ ,
(2)$x^2+y^{\prime}=0$ ,
(3)$x^2+y y^{\prime}=1$ ,
(4)$x^2 y^{\prime}+y^{\prime \prime}=1$ .
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与