单选题 (共 3 题 ),每题只有一个选项正确
求 $\lim _{n \rightarrow \infty} \frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}}$.
$\text{A.}$ 1;
$\text{B.}$ $\frac{2}{\pi}$
$\text{C.}$ $\frac{\pi}{2}$
$\text{D.}$ 0
$\lim _{x \rightarrow 0} \frac{x^2-\sin ^2 x}{x^4}=$
$\text{A.}$ $-\frac{1}{3}$.
$\text{B.}$ $\frac{1}{3}$.
$\text{C.}$ $-\frac{1}{6}$.
$\text{D.}$ $\frac{1}{6}$.
$\text{E.}$ $1$
当 $x \rightarrow 0^{+}$时,下列无穷小量中,与 $x$ 等价的是( ).
$\text{A.}$ $e ^{-\sin x}-1$
$\text{B.}$ $\sqrt{x+1}-\cos x$
$\text{C.}$ $1-\cos \sqrt{2 x}$
$\text{D.}$ $1-\frac{\ln (1+x)}{x}$