考研数学
重点科目
其它科目

科数网

2

数学

单选题 (共 2 题 ),每题只有一个选项正确
设矩阵 $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 4 & a^2\end{array}\right) , b=\left(\begin{array}{c}1 \\ d \\ d^2\end{array}\right)$ ,若集合 $\Omega=\{1,2\}$ ,则线性方程组 $A x=b$ 有无穷多个解的充分必要条件为
$\text{A.}$ $a \notin \Omega, d \notin \Omega$ $\text{B.}$ $a \notin \Omega, d \in \Omega$ $\text{C.}$ $a \in \Omega, d \notin \Omega$ $\text{D.}$ $a \in \Omega, d \in \Omega$

设二次型 $f\left(x_1, x_2, x_3\right)$ 在正交变换 $x=P y$ 下的标准形为 $2 y_1^2+y_2^2-y_3^2$ ,其中 $P=\left(e_1, e_2, e_3\right)$ ,若 $Q=\left(e_1,-e_3, e_2\right)$ ,则 $f\left(x_1, x_2, x_3\right)$ 在正交变换 $x=Q y$ 下的标准形为
$\text{A.}$ $2 y_1^2-y_2^2+y_3^2$ $\text{B.}$ $2 y_1^2+y_2^2-y_3^2$ $\text{C.}$ $2 y_1^2-y_2^2-y_3^2$ $\text{D.}$ $2 y_1^2+y_2^2+y_3^2$

填空题 (共 1 题 ),请把答案直接填写在答题纸上
设 3 阶矩阵 $A$ 的特征值为 $2,-2,1, B=A^2-A+E$ ,其中 $\boldsymbol{E}$ 为 $\mathbf{3}$ 阶单位矩阵,则行列式 $|\boldsymbol{B}|=$

解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设矩阵 $A=\left(\begin{array}{ccc}a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a\end{array}\right)$ 且 $A^3=0$ 。
(1) 求 $a$ 的值;
(2) 若矩阵 $\boldsymbol{X}$ 满足 $\boldsymbol{X}-\boldsymbol{X} \boldsymbol{A}^2-\boldsymbol{A} \boldsymbol{X}+\boldsymbol{A} \boldsymbol{X} \boldsymbol{A}^2=E$ ,其中 $E$ 为 3 阶单位矩阵,求 $X$

设矩阵 $A=\left(\begin{array}{rrr}0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a\end{array}\right)$ 相似于矩阵
$$
B=\left(\begin{array}{ccc}
1 & -2 & 0 \\
0 & b & 0 \\
0 & 3 & 1
\end{array}\right) \text {. }
$$
(1) 求 $a, b$ 的值;
(2) 求可逆矩阵 $P$ ,使得 $P^{-1} A P$ 为对角矩阵

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与