科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

重庆工商大学(商务系)- 概率与统计 - 半期测试

数学

一、单选题 (共 24 题,每小题 5 分,共 50 分,每题只有一个选项正确)
7. 设 $A, B, C$ 为三个随机事件, 且 $P(A)=P(B)=P(C)=\frac{1}{4}, P(A B)=0$ $P(A C)=P(B C)=\frac{1}{12}$, 则 $A, B, C$ 中恰有一个事件发生的概率为
$\text{A.}$ $\frac{3}{4}$ $\text{B.}$ $\frac{2}{3}$ $\text{C.}$ $\frac{1}{2}$ $\text{D.}$ $\frac{5}{12}$


某工厂急需 12 只集成电路装配仪表, 现要到外地采购, 已知该型号集成电路的不合格 品率为 $0.1$, 问需要采购几只才能以 $99 \%$ 的把握保证其中合格的集成电路不少于有 12 只?
$\text{A.}$ 15 $\text{B.}$ 16 $\text{C.}$ 17 $\text{D.}$ 18


设随机变量 $X \sim t(n), Y \sim F(1, n)$, 如果 $c>0$ 使得 $\mathbb{P}(0 < X < c)=\alpha$, 则 $\mathbb{P}\left(Y>c^2\right)=$ ()
$\text{A.}$ $1-\alpha$ $\text{B.}$ $\alpha$ $\text{C.}$ $1-2 \alpha$ $\text{D.}$ $2 \alpha$


设平面区域 $D=\left\{(x, y) \mid 0 \leqslant x \leqslant 2,0 \leqslant y \leqslant 4-x^2\right\}$, 向 $D$ 内随机投掷一点 $(X$, $Y)$, 记 $A=\{X \leqslant 1\}, B=\{Y \leqslant 3\}$, 则随机事件 $A, B$ 恰好有一个发生的概率为()
$\text{A.}$ $\frac{1}{16}$. $\text{B.}$ $\frac{7}{16}$. $\text{C.}$ $\frac{5}{16}$. $\text{D.}$ $\frac{3}{16}$.


设随机变量 $X$ 与 $Y$ 相互独立, $X \sim N(0,1), Y$ 的概率分布为 $P\{Y=0\}=\frac{1}{4}$, $P\{Y=1\}=\frac{3}{4}, Z=X Y$, 则对于 $Z$ 的分布函数 $F(z)$ 有
$\text{A.}$ $\lim _{z \rightarrow 0^{-}} F(z)=\frac{3}{8}, \lim _{z \rightarrow 0^{+}} F(z)=\frac{5}{8}$. $\text{B.}$ $\lim _{z \rightarrow 0^{-}} F(z)=\lim _{z \rightarrow 0^{+}} F(z)=\frac{1}{2}$. $\text{C.}$ $\lim _{z \rightarrow 0^{-}} F(z)=\frac{1}{4}, \lim _{z \rightarrow 0^{+}} F(z)=\frac{3}{4}$. $\text{D.}$ $\lim _{z \rightarrow 0^{-}} F(z)=\frac{3}{4}, \lim _{z \rightarrow 0^{+}} F(z)=\frac{5}{8}$.


设 $X_1, X_2, \cdots, X_8$ 为来自总体 $X \sim N\left(0, \sigma^2\right)$ 的简单随机样本, $Y^2=\frac{1}{8} \sum_{i=1}^8 X_i^2$, 则 下列选项正确的是
$\text{A.}$ $X^2 \sim \chi^2(1)$. $\text{B.}$ $Y^2 \sim \chi^2(8)$ $\text{C.}$ $\frac{X}{Y} \sim t(8)$. $\text{D.}$ $\frac{X^2}{Y^2} \sim F(8,1)$.


设 $A, B$ 为两个事件并且 $0 < P(A) < 1,0 < P(B) < 1$, 那么下列说法中不正确的是
$\text{A.}$ $P(A \mid B)>P(A \mid \bar{B})$ 的充要条件是 $P(A B)>P(A) P(B)$ $\text{B.}$ 若满足 $P(A \mid \bar{B})=P(B \mid \bar{A})$, 则 $P(A)=P(B)$ $\text{C.}$ 若满足 $P(A \mid \bar{B})=P(B \mid \bar{A})$, 则 $P(A)=P(B)$ 或者 $P(A \bigcup B)=1$ $\text{D.}$ 若 $P(A \mid \bar{B})+P(\bar{A} \mid B)=1$, 则 $A$ 和 $B$ 独立。


设某人每次射击命中的概率都为 $p(0 < p < 1)$, 则他第 8 次射击恰好是第 4 次命中的概率为
$\text{A.}$ $35 p^3(1-p)^4$. $\text{B.}$ $35 p^4(1-p)^3$. $\text{C.}$ $35 p^4(1-p)^4$. $\text{D.}$ $35 p^5(1-p)^3$.


设 $A, B, C$ 足三个随机变量, 则事件 “ $A, B, C$ 不多于一个发生” 的逆事件为
$\text{A.}$ $A, B, C$ 都发生 $\text{B.}$ $A, B, C$ 至少有一个发生 $\text{C.}$ $A, B, C$ 都不发生 $\text{D.}$ $A, B, C$ 至少有两个发生


$A, B$ 为二事件,则 $\overline{A \cup B}=(\quad)$
$\text{A.}$ $A B$ $\text{B.}$ $\bar{A} \bar{B}$ $\text{C.}$ $A \bar{B}$ $\text{D.}$ $\bar{A} \cup \bar{B}$


设 $A, B, C$ 表示三个事件,则 $\bar{A} \bar{B} \bar{C}$ 表示
$\text{A.}$ $A, B, C$ 中有一个发生 $\text{B.}$ $A, B, C$ 中恰有两个发生 $\text{C.}$ $A, B, C$ 中不多于一个发生 $\text{D.}$ $A, B, C$ 都不发生


$A, B$ 为两事件,若 $P(A \cup B)=0.8, P(A)=0.2$, $P(\bar{B})=0.4$ 则 $(\bar{\square})$ 成立
$\text{A.}$ $P(A \bar{B})=0.32$ $\text{B.}$ $P(\bar{A} \bar{B})=0.2$ $\text{C.}$ $P(B-A)=0.4$ $\text{D.}$ $P(\bar{B} A)=0.48$


用 6 个点将一个圆周分成 6 等份, 从中随机选取两点连线, 再从剩余各点中随机选取两点连线, 如此得到的两条弦相交的概率是
$\text{A.}$ $\frac{1}{2}$. $\text{B.}$ $\frac{1}{3}$. $\text{C.}$ $\frac{1}{4}$. $\text{D.}$ $\frac{1}{6}$.


设口袋中有 10 个球, 其中 6 个红球, 4 个白球, 每次不放回地从中任取一个, 取两次, 若取出的两个球中有 1 个是白球, 则两个都是白球的概率为
$\text{A.}$ $\frac{1}{3}$. $\text{B.}$ $\frac{1}{5}$. $\text{C.}$ $\frac{1}{4}$. $\text{D.}$ $\frac{1}{6}$.


对任意事件 $A, B$,下列结论正确的是
$\text{A.}$ $P(A) P(B) \geqslant P(A \cup B) P(A B)$. $\text{B.}$ $P(A)+P(B) \leqslant 2 P(A B)$. $\text{C.}$ $P(A)+P(A B) \geqslant P(A \cup B)$. $\text{D.}$ $P(A)+P(B) \leqslant P(A \cup B) P(A B)$.


从装有 2 只红球, 2 只白球的袋中任取两球, 记 $A=$ “取到 2 只白球”, 则 $\bar{A}=$
$\text{A.}$ 取到 2 只红球 $\text{B.}$ 取到 1 只白球 $\text{C.}$ 没有取到白球 $\text{D.}$ 至少取到 1 只红球


对掷一枚硬币的试验, “出现正面”称为
$\text{A.}$ 随机事件 $\text{B.}$ 必然事件 $\text{C.}$ 不可能事件 $\text{D.}$ 样本空间


设 $A$ 和 $B$ 是任意两个概率不为零的互斥事件, 则下列结论中肯定正确的是
$\text{A.}$ $\bar{A}$ 与 $\bar{B}$ 互斥 $\text{B.}$ $\bar{A}$ 与 $\bar{B}$ 不互斥 $\text{C.}$ $P(A B)=P(A) P(B)$ $\text{D.}$ $P(A-B)=P(A)$


设 $A, B$ 为两随机事件, 且 $B \subset A$, 则下列式子正确的是
$\text{A.}$ $P(A \cup B)=P(B)$ $\text{B.}$ $P(A B)=P(B)$ $\text{C.}$ $P(B \mid A)=P(B)$ $\text{D.}$ $P(B-A)=P(B)-P(A)$


已知 $P(A)=P(B)=\frac{2}{3}$, 又设 $I=P(A \mid B)+P(B \mid A)$, 则 $I$ 的最大可能取值 $I_1$ 和最小可能取值 $I_2$ 之差为
$\text{A.}$ $\frac{1}{4}$. $\text{B.}$ $\frac{1}{3}$. $\text{C.}$ $\frac{1}{2}$. $\text{D.}$ 1


设 $A, B$ 为两个随机事件, $0 < P(A)=p < 1,0 < P(B)=q < 1$, 则下列结论中, 错误的是
$\text{A.}$ $P(A \mid B) \leqslant \frac{p}{q}$. $\text{B.}$ $P(\bar{A} \mid B) \leqslant \frac{P}{q}$. $\text{C.}$ $P(A \mid B) \geqslant 1+\frac{p-1}{q}$. $\text{D.}$ $P(\bar{A} \mid B) \geqslant 1-\frac{P}{q}$.


设 $A, B$ 为随机事件, 则 $(A-B) \cup B$ 等于
$\text{A.}$ $A$ $\text{B.}$ $A B$ $\text{C.}$ $A \bar{B}$ $\text{D.}$ $A \cup B$


设 $A, B$ 为随机事件, $B \subset A$, 则
$\text{A.}$ $P(B-A)=P(B)-P(A)$ $\text{B.}$ $P(B \mid A)=P(B)$ $\text{C.}$ $P(A B)=P(A)$ $\text{D.}$ $P(A \cup B)=P(A)$


已知一射手在唡次独立射击中至少命中目标一次的概率为 0.96 , 则该射手每次射击的命中率为
$\text{A.}$ 0.04 $\text{B.}$ 0.2 $\text{C.}$ 0.8 $\text{D.}$ 0.96


二、填空题 (共 19 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设随机变量 $X \sim N\left(\mu, \sigma^2\right)$, 且 $P(X < -1)=P(X \geq 3)=\Phi(-1)$, 其中 $\Phi(x)$ 为标准 正态分布函数, 则 $\mu=$ (  ) ,$\sigma=$ (  )



设 $X_1, X_2, \cdots, X_n$ 为来自总体 $X \sim B(N, p)(0 < p < 1)$ 的简单随机样本, 则 $p$ 的最大似然估计量 $\hat{p}=$



设 $A 、 B$ 是随机事件, $P(A)=0.7, P(A-B)=0.3$, 求 $P(\overline{A B})$.



袋中有红球 4 只, 黑球 3 只, 从中任意取出 2 只, 求这 2 只球的颜色不相同的概率



在数字通讯中, 信号由 0 和 1 组成, 因为有随机干扰, 收到信号时, 0 被误收作 1 的概率为 0.2 , 而 1 被误收作 0 的概率为 0.1 , 假定发送信号 0 与 1 的几率均等.
1. 求发送的是信号 0 且收到的也是信号 0 的概率;
2. 求收到的是信号 0 的概率;
3. 已知收到的是信号 0 , 求发出的是信号 0 的概率.



若事件 $A, B$ 相互独立, $P(A)=0.8, P(B)=0.6$. 求: $P(A+B)$ 和 $P\{\bar{A} \mid(A+B)\}$.



某射手有 3 发子弹,射一次命中的概率为 $\frac{2}{3}$ ,如果命中 了就停止射击,否则一直独立射到子弹用尽. 求:
(1) 耗用子弹数 $X$ 的分布律;
(2) $\boldsymbol{E X}$;
(3) $D X$.



设 $A, B, C$ 为随机事件, 且 $A$ 与 $B$ 互不相容, $A$ 与 $C$ 互不相容, $B$ 与 $C$ 相互独立, $P(A)=P(B)=P(C)=\frac{1}{3}$, 则 $P(B \cup C \mid A \cup B \cup C)=$



记半圆盘 $x^2+y^2 \leqslant 4(y \geqslant 0)$ 中到 $x$ 轴的距离不超过 $\sqrt{2}$ 的点所构成的区域为 $D$. 向区域 $D$ 中随机投郑一点, 以该点为圆心, 该点到 $x$ 轴的距离为半径作圆 $C$. 记圆 $C$ 的面积为 $S$,则 $E(S)=$



从数字 $1,2, \cdots, 10$ 中有放回地任取 4 个数字, 则数字 10 恰好出现两次的概率为



设 $A, B$ 为随机事汼, $P(A)=0.2, P(B \mid A)=0.4, P(A \mid B)=0.5$.
求: (1) $P(A B)$;
(2) $P(A \cup B)$.



写出 $n$ 个人组成的班级的一次某学科测验的平均成绩的样本空间。



袋中有 4 粒黑球, 1 粒白球, 每次从中任取一粒, 并换入一粒黑球, 这样连续进行下去, 求第三次取到黑球的概率。



任取一个正整数, 该数的平方的末尾数是 1 的概率是多少?



有 10 本不同的数学书, 5 本不同的外文书, 任意地摆放在书架上, 求 5 本不同的外文书放在一起的概率.



从 $1,2,3,4,5,6,7,8,9$ 这九个数字中任取三个数, 求
(1) 三个数之和为 10 的概率;
(2) 三个数之积为 21 的倍数的概率.



试卷二维码

分享此二维码到群,让更多朋友参与