一、单选题 (共 1 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $f(x, y)$ 在点 $P_0\left(x_0, y_0\right)$ 处有二阶连续偏导数, 且 $f(x, y)$ 在 $P_0$ 处取得极大 值, 则
$\text{A.}$ $f_{x x}^{\prime \prime}\left(P_0\right) \geqslant 0, f_{y y}^{\prime \prime}\left(P_0\right) \geqslant 0$.
$\text{B.}$ $f_{x x}^{\prime \prime}\left(P_0\right) < 0, f_{y y}^{\prime \prime}\left(P_0\right) < 0$.
$\text{C.}$ $f_{x x}^{\prime \prime}\left(P_0\right) \leqslant 0, f_{y y}^{\prime \prime}\left(P_0\right) \leqslant 0$.
$\text{D.}$ $f_{x x}^{\prime \prime}\left(P_0\right) \leqslant 0, f_{y y}^{\prime \prime}\left(P_0\right) \geqslant 0$.
二、填空题 (共 1 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设向量场 $\boldsymbol{A}(x, y, z)=x y \boldsymbol{i}-y z \boldsymbol{j}+z x \boldsymbol{k}$, 则 $\operatorname{div}[\operatorname{rot} \boldsymbol{A}(x, y, z)]=$
三、解答题 ( 共 6 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设函数 $Q(x, y)$ 在 $x O y$ 平面上具有一阶连续偏导数,曲线积分 $\int_{L} 2 x y \mathrm{~d} x+Q(x, y) \mathrm{d} y$ 与路径无关, 并且 对任意 $t$ 恒有
$$
\int_{(0,0)}^{(t, 1)} 2 x y \mathrm{~d} x+Q(x, y) \mathrm{d} y=\int_{(0,0)}^{(1, t)} 2 x y \mathrm{~d} x+Q(x, y) \mathrm{d} y,
$$
求 $Q(x, y)$.
计算曲线积分 $I=\int_L \frac{4 x-y}{4 x^2+y^2} d x+\frac{x+y}{4 x^2+y^2} d y$, 其中 $L$ 是 $x^2+y^2=2$, 方向为逆时针方向
设函数 $z=\left(x^2+y^2\right) f\left(x^2+y^2\right)$ 满足 $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$, 且 $f(1)=0, f^{\prime}(1)=1$, 若 $f(x)$ 在 $[1,+\infty)$ 上有连续二阶导数, 求 $f(x)$ 在 $[1,+\infty)$ 的最大值.
设函数 $f(x)$ 二阶可导, $f(0)=1$, 且有
$$
f^{\prime}(x)+3 \int_0^x f^{\prime}(t) \mathrm{d} t+2 x \int_0^1 f(x t) \mathrm{d} t+\mathrm{e}^{-x}=0,
$$
求 $f(x)$.
设 $f(x)$ 二阶可导, 且 $f(0)=0, f^{\prime}(0)=0$, 若 $g(x, y)=\int_0^y f(x t) \mathrm{d} t$ 满足方程
$$
\frac{\partial^2 g}{\partial x \partial y}-x y g(x, y)=x y^2 \sin x y,
$$
求 $g(x, y)$.
设可微函数 $f(x, y)$ 在点 $(x, y)$ 处沿 $\boldsymbol{l}_1=(-1,0)$ 与 $\boldsymbol{l}_2=(0,-1)$ 的方向导数分别 为 $2 a x-3 x^2$ 与 $2 a y-3 y^2(a>0)$, 且 $f(0,0)=0$, 若 $f(x, y)$ 有极小值 $-8$, 求 $a$ 的值及 $f(x, y)$ 的表达式.