科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

kyst2

数学

一、单选题 (共 9 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知 $Q=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9\end{array}\right), P$ 为三阶非零矩阵, 且满足 $P Q=0$, 则
$\text{A.}$ $t=6$ 时, $P$ 的秩必为 1 $\text{B.}$ $t=6$ 时, $P$ 的秩必为 2 $\text{C.}$ $t \neq 6$ 时, $P$ 的秩必为 1 $\text{D.}$ $t \neq 6$ 时, $P$ 的秩必为 2


设 $A, B$ 都是 $n$ 阶非零矩阵,且 $A B=0$ ,则 $A$ 和 $B$ 的秩
$\text{A.}$ 必有一个等于零 $\text{B.}$ 都小于 $n$ $\text{C.}$ 一个小于 $\boldsymbol{n}$ ,一个等于 $\boldsymbol{n}$ $\text{D.}$ 都等于 $n$


设 $n(n \geq 3)$ 阶矩阵 $A=\left(\begin{array}{ccccc}1 & a & a & \cdots & a \\ a & 1 & a & \cdots & a \\ a & a & 1 & \cdots & a \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a & a & a & \cdots & 1\end{array}\right)$, 若矩阵 $A$ 的秩为 $n-1$ ,则 $a$ 必为
$\text{A.}$ 1 $\text{B.}$ $\frac{1}{1-n}$ $\text{C.}$ -1 $\text{D.}$ $\frac{1}{n-1}$


设 $A$ 为 $n$ 阶实矩阵, $A^T$ 是 $A$ 的转置矩阵,则对于线性方程组 $(I): A x=0$ 和 $(I I): x^T A x=0$ ,必有
$\text{A.}$ $(I I)$ 的解都是 $(I)$ 的解, $(I)$ 的解也是 $(I I)$ $\text{B.}$ $(I I)$ 的解都是 $(I)$ 的解,但 $(I)$ 解不是 $(I I)$ 的解 $\text{C.}$ $(I)$ 解不是 $(I I)$ 的解, $(I I)$ 的解也不是 $(I)$ 的解 $\text{D.}$ $(I)$ 解是 $(I I)$ 的解,但 $(I I)$ 的解不是 $(I)$ 的解


设 $A$ 是 3 阶方阵,将 $A$ 的第 1 列与第 2 列交换得 $B$ ,再把 $B$ 的第 2 列加到第 3 列得 $C$ ,则满足 $A Q=C$ 的可逆矩阵 $Q$ 为
$\text{A.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ $\text{B.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$ $\text{C.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$ $\text{D.}$ $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$


设 $A$ 为三阶矩阵, 将 $A$ 的第 2 行加到第 1 行得 $B$ ,再将 $B$的第 1 列的 -1 倍加到第 2 列得 $C$ ,记 $P=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ ,则
$\text{A.}$ $C=P^{-1} A P$ $\text{B.}$ $C=P A P^{-1}$ $\text{C.}$ ${C}={P}^T {A P}$ $\text{D.}$ $C=P A P^T$


设 $A$ 为三阶矩阵,将 $A$ 的第 2 行加到第 1 行得 $B$ ,再将 $B$的第 1 列的 -1 倍加到第 2 列得 $C$ ,记 $P=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ ,则
$\text{A.}$ $C=P^{-1} A P$ $\text{B.}$ $C=P A P^{-1}$ $\text{C.}$ $C=P^T A P$ $\text{D.}$ $C=P A P^T$


设 $\boldsymbol{A}$ 为 3 阶矩阵,将 $\boldsymbol{A}$ 的第 2 列加到第 1 列得矩阵 $\boldsymbol{B}$ ,再交换 $B$ 的第 2 行与第 3 行得单位矩阵,记 $P_1=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ , $P_2=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ ,则 $A=$
$\text{A.}$ $P_1 P_2$ $\text{B.}$ $P_1^{-1} P_2$ $\text{C.}$ $P_2 P_1$ $\text{D.}$ $P_2 P_1^{-1}$


交换 $B$ 的第 2 行与第 3 行得单位矩阵,记 $P_1=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ ,
$P_2=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) ,$ 则 $A=(\quad)$
$\text{A.}$ $P_1 P_2$ $\text{B.}$ $P_1^{-1} P_2$ $\text{C.}$ $P_2 P_1$ $\text{D.}$ $P_2 P_1^{-1}$


二、判断题 (共 1 题,每小题 5 分,共 20 分)
若 $A$ 和 $B$ 都是 $n$ 阶非零方阵,且 $A B=0$ ,则 $A$ 的秩必小于 $n$.
$\text{A.}$ 正确 $\text{B.}$ 错误


三、填空题 (共 14 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $\boldsymbol{A}=\left(\begin{array}{cccc}a_{1} b_{1} & a_{1} b_{2} & \cdots & a_{1} b_{n} \\ a_{2} b_{1} & a_{2} b_{2} & \cdots & a_{2} b_{n} \\ \vdots & \vdots & & \vdots \\ a_{n} b_{1} & a_{n} b_{2} & \cdots & a_{n} b_{n}\end{array}\right)$, 其中 $a_{i} \neq 0, b_{i} \neq 0(i=1,2, \cdots, n)$, 则矩阵 $\boldsymbol{A}$ 的秩 $r(\boldsymbol{A})=$



设 $\boldsymbol{A}$ 是 $4 \times 3$ 矩阵, 且 $\boldsymbol{A}$ 的秩 $r(\boldsymbol{A})=2$, 而 $\boldsymbol{B}=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3\end{array}\right)$, 则 $r(\boldsymbol{A} \boldsymbol{B})= $.



$\lim _{(x, y) \rightarrow(0,0)} \frac{\arctan \left(x^3+y^3\right)}{x^2+y^2}=$



微分方程 $y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{-2 x}$ 的通解为



已知 $f(x, y)=x+(y-1) \sin \sqrt{\frac{x}{y}}$, 则 $f_x(x, 1)=$



设 4 阶方阵 $A$ 的秩为 2 ,则其伴随矩阵 $A^*$ 的秩为



设 $A=\left(\begin{array}{ccc}1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1\end{array}\right), B$ 为三阶非零矩阵,且 $A B=O$ ,则 $t=$



设 $A, B$ 均为 $n$ 阶矩阵, $|A|=2,|B|=-3$ ,则 $\left|2 A^* B^{-1}\right|=$



已知 $A B-B=A$, 其中 $B=\left(\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$, 则 $A=$



已知矩阵 $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right) , B=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$, 且矩阵 $X$满足 $A X A+B X B=A X B+B X A+E$ ,其中 $E$ 是 3 阶单位阵,求 $\boldsymbol{X}$.



设 $n$ 维向量 $\alpha=(a, 0, \cdots, 0, a)^T, a < 0 ; E$ 为 $\boldsymbol{n}$ 阶单位矩阵,矩阵 $A=E-\alpha \alpha^T, B=E+\frac{1}{a} \alpha \alpha^T$ ,其中 $A$的逆矩阵为 $B$ ,则 $a=$



设矩阵 $A=\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right) , E$ 为二阶单位矩阵,矩阵 $B$ 满足 $B A=B+2 E$ ,则 $|B|=$



设 $z=x y e^{x^2+y^2}$, 求 $z_{x y}^{\prime \prime}$ 。



求函数 $u=x^2+y^2-8 x+4 y$ 在 $D: x^2+y^2 \leq 9$ 上的最值。



四、解答题 ( 共 11 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $\boldsymbol{A}$ 是 $n$ 阶矩阵, 满足 $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}=\boldsymbol{E}\left(\boldsymbol{E}\right.$ 是 $n$ 阶单位矩阵, $\boldsymbol{A}^{\mathrm{T}}$ 是 $\boldsymbol{A}$ 的转置矩阵), $|\boldsymbol{A}| < 0$, 求 $|\boldsymbol{A}+\boldsymbol{E}|$.



 

设函数 $u=y f\left(\frac{x}{y}\right)+x g\left(\frac{y}{x}\right)$, 其中 $f, g$ 具有二阶连续偏导数,
求证: $x \frac{\partial^2 u}{\partial x^2}+y \frac{\partial^2 u}{\partial x \partial y}=0$.



 

已知函数 $z=z(x, y)$ 由方程 $x y=e^{x z}-2 z$ 确定, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.



 

设 $z=f\left(x^2+y^2, \cos (x y)\right), f$ 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}$



 

设函数 $u=f(x y, g(x))$, 其中 $f$ 具有二阶连续偏导数, $g(x)$ 可导且在 $x=1$ 处取到极值
$$
g(1)=1 \text {, 求 }\left.\frac{\partial^2 u}{\partial x \partial y}\right|_{(1.1)}
$$



 

已知函数 $z=z(x, y)$ 由方程 $x y=e^{x z}-2 z$ 确定, 求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.



 

设矩阵 $X$ 满足 $A X+I=A^2+X$ ,其中 $I$ 为三阶单位阵,又已知 $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1\end{array}\right)$ ,试求出矩阵 $X$.



 

设三阶矩阵 $A$ 满足 $A \alpha_i=i \alpha_i(i=1,2,3)$ ,其中列向量
$\alpha_1=(1,2,2)^T, \quad \alpha_2=(2,-2,1)^T, \alpha_3=(-2,-1,2)^T \text {. }$ 试求矩阵 $\boldsymbol{A}$.



 

已知 $A=\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right)$ 且 $A^2-A B=E$, 其中 $E$ 是三阶单位矩阵,求矩阵 $\boldsymbol{B}$.



 

设 $\left(2 E-C^{-1} B\right) A^T=C^{-1}$ ,其中 $E$ 是 4 阶单位矩阵, $A^T$ 是 4 阶矩阵 $A$ 的转置矩阵,
$$
B=\left(\begin{array}{cccc}
1 & 2 & -3 & -2 \\
0 & 1 & 2 & -3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right), C=\left(\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right) \text {, }
$$

求 $A$.



 

设矩阵 $A$ 的伴随矩阵 $A^*=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8\end{array}\right)$ , $A B A^{-1}=B A^{-1}+3 E, E$ 为 4 阶单位矩阵,求矩阵 $B$.



 

试卷二维码

分享此二维码到群,让更多朋友参与