一、单选题 (共 4 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设曲面 $\Sigma$ 是上半球面 $x^2+y^2+z^2=R^2(z \geq 0)$, 曲面 $\Sigma_1$ 是 $\Sigma$ 在第一卦限中的部分, 则有
$\text{A.}$ $\iint_{\Sigma} x \mathrm{~d} S=4 \iint_{\Sigma_1} x \mathrm{~d} S$
$\text{B.}$ $\iint_{\Sigma} y \mathrm{~d} S=4 \iint_{\Sigma_1} y \mathrm{~d} S$
$\text{C.}$ $\iint_{\Sigma} z \mathrm{~d} S=4 \iint_{\Sigma_1} z \mathrm{~d} S$
$\text{D.}$ $\iint_{\Sigma} x y z \mathrm{~d} S=4 \iint_{\Sigma_1} x y z \mathrm{~d} S$
设 $\Sigma$ 为球面 $x^2+y^2+z^2=R^2$ 的下半球面的下侧, 将曲面 积分 $\iint_{\Sigma} x^2 y^2 z \mathrm{~d} x \mathrm{~d} y$ 化为二重积分为
$\text{A.}$ $-\iint_{D_{x y}} x^2 y^2\left(-\sqrt{R^2-x^2-y^2}\right) \mathrm{d} x \mathrm{~d} y, \quad D_{x y}: x^2+y^2 \leq R^2$
$\text{B.}$ $-\iint_{D_{x y}} x^2 y^2 \sqrt{R^2-x^2-y^2} \mathrm{~d} x \mathrm{~d} y$, $D_{x y}: x^2+y^2 \leq R^2$
$\text{C.}$ $\iint_{D_{x y}} x^2 y^2\left(R^2-x^2-y^2\right) \mathrm{d} x \mathrm{~d} y$, $D_{x y}: x^2+y^2 \leq R^2$
$\text{D.}$ $-\iint_{D_{x y}} x^2 y^2\left(R^2-x^2-y^2\right) \mathrm{d} x \mathrm{~d} y$, $D_{x y}: x^2+y^2 \leq R^2$
三、解答题 ( 共 5 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
计算 $\iint_{\Sigma}\left(x^2+y^2\right) \mathrm{d} S$, 其中 $\Sigma: z=\sqrt{x^2+y^2}(0 \leq z \leq 4)$.
设 $z=f\left(e^x \sin y, x^2+y^2\right), f$ 其有二阶连续偏导数, 求 $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$
设函数 $F(x, y)$ 具有一阶连续偏导数, $z=z(x, y)$ 是由方程 $F\left(\frac{x}{z}, \frac{y}{z}\right)=0$ 所确 定的隐函数, 试求表达式 $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ 。
计算三重积分 $\iiint_{\Omega} z d v$, 其中 $\Omega$ 为曲面 $z=\sqrt{2-x^2-y^2}$ 及 $z=x^2+y^2$ 所围成的闭 区域。
计算 $\iint(x+y+z) d S$, 其中曲而 $\Sigma$ 为球面 $x^2+y^2+z^2=a^2$ 上 $z \geq \boldsymbol{h}(0 < \boldsymbol{h} < \boldsymbol{a})$ 的部分