单选题 (共 1 题 ),每题只有一个选项正确
已知极限 $\lim _{x \rightarrow 0}\left(\mathrm{e}^x+\frac{a x^2+b x}{1-\sin x}\right)^{\cot ^2 x}=1$, 则
$\text{A.}$ $a=\frac{1}{2}, b=1$.
$\text{B.}$ $a=\frac{1}{2}, b=-1$.
$\text{C.}$ $a=-\frac{1}{2}, b=-1$.
$\text{D.}$ $a=-\frac{1}{2}, b=1$.
填空题 (共 2 题 ),请把答案直接填写在答题纸上
设函数 $f(x)=\left\{\begin{array}{cc}\frac{1}{x} \int_0^x\left(\frac{\sin t}{t}\right)^2 \mathrm{~d} t, & x \neq 0, \\ 1, & x=0,\end{array}\right.$ 则 $f^{(4)}(0)=$
幂级数 $\sum_{n=1}^{\infty} \frac{2 n-1}{2^n} x^{2 n-2}$ 的收敛域为?
解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设函数 $z=u^2 \ln v$ ,而 $u=\frac{1}{y}, v=3 x+2 y$ ,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$
计算旋转抛物面 $z=x^2+y^2-1$ 在点 $(2,1,4)$ 处的切平面及法线方程
方程组 $\left\{\begin{array}{l}x+y+z=0 \\ x^2+y^2+z^2=1\end{array}\right.$ 确定两个隐函数 $x=x(z), y=y(z)$ ,计算 $\frac{d x}{d z}, \frac{d y}{d z}$