科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

数学试卷

数学

一、单选题 (共 1 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知极限 $\lim _{x \rightarrow 0}\left(\mathrm{e}^x+\frac{a x^2+b x}{1-\sin x}\right)^{\cot ^2 x}=1$, 则
$\text{A.}$ $a=\frac{1}{2}, b=1$. $\text{B.}$ $a=\frac{1}{2}, b=-1$. $\text{C.}$ $a=-\frac{1}{2}, b=-1$. $\text{D.}$ $a=-\frac{1}{2}, b=1$.


二、填空题 (共 2 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设函数 $f(x)=\left\{\begin{array}{cc}\frac{1}{x} \int_0^x\left(\frac{\sin t}{t}\right)^2 \mathrm{~d} t, & x \neq 0, \\ 1, & x=0,\end{array}\right.$ 则 $f^{(4)}(0)=$



幂级数 $\sum_{n=1}^{\infty} \frac{2 n-1}{2^n} x^{2 n-2}$ 的收敛域为?



三、解答题 ( 共 9 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设函数 $z=u^2 \ln v$ ,而 $u=\frac{1}{y}, v=3 x+2 y$ ,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$



 

计算旋转抛物面 $z=x^2+y^2-1$ 在点 $(2,1,4)$ 处的切平面及法线方程



 

方程组 $\left\{\begin{array}{l}x+y+z=0 \\ x^2+y^2+z^2=1\end{array}\right.$ 确定两个隐函数 $x=x(z), y=y(z)$ ,计算 $\frac{d x}{d z}, \frac{d y}{d z}$



 

计算二重积分, $I=\iint_D(x+2 y) d \sigma$ ,其中 $D$ 为 $x^2+y^2=2 x$ 所围成的区域



 

计算曲面积分, $I=\iint_{\Sigma}(x+y+z) d S$ ,其中 $\Sigma$ 为上半球面 $z=\sqrt{a^2-x^2-y^2}(a>0)$



 

计算第二类曲线积分, $I=\int_L e^x \sin y d x+e^x \cos y d y$ ,其中 $L$ 从 $O(0,0)$ 沿摆线 $x=a(t-\sin t), y=a(1-\cos t)$ 到 $A(\pi a, 2 a)(a>0)$



 

求函数 $z=f(x, y)=3 x^2+3 y^2-x^3$ 在闭区域 $D=\left\{(x, y) \mid x^2+y^2 \leq 16\right\}$ 上的最大值与最小值.



 

计算二重积分, $I=\int_{\frac{1}{4}}^{\frac{1}{2}} d y \int_{\frac{1}{2}}^{\sqrt{y}} e^{\frac{y}{x}} d x+\int_{\frac{1}{2}}^1 d y \int_y^{\sqrt{y}} e^{\frac{y}{x}} d x$



 

请将函数 $y=x \ln (1+x)$ 展开成 $x$ 的幂级数



 

试卷二维码

分享此二维码到群,让更多朋友参与