考研数学
重点科目
其它科目

科数网

多元函数微分学(三)

解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $f(x)$ 二阶可导, 且 $f(0)=0, f^{\prime}(0)=0$, 若 $g(x, y)=\int_0^y f(x t) \mathrm{d} t$ 满足方程
$$
\frac{\partial^2 g}{\partial x \partial y}-x y g(x, y)=x y^2 \sin x y,
$$
求 $g(x, y)$.

设可微函数 $f(x, y)$ 在点 $(x, y)$ 处沿 $\boldsymbol{l}_1=(-1,0)$ 与 $\boldsymbol{l}_2=(0,-1)$ 的方向导数分别 为 $2 a x-3 x^2$ 与 $2 a y-3 y^2(a>0)$, 且 $f(0,0)=0$, 若 $f(x, y)$ 有极小值 $-8$, 求 $a$ 的值及 $f(x, y)$ 的表达式.

设 $z=f\left(e^x \sin y, x^2+y^2\right), f$ 其有二阶连续偏导数, 求 $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$

已知函数 $f(x, y)=\left\{\begin{array}{ll}\frac{x^2 y}{x^4+y^2}, & x^2+y^2 \neq 0 \\ 0, & x^2+y^2=0\end{array}\right.$;
证明: (1) $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$ 存在;
(2) $\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)$ 在点 $(0,0)$ 处不连续;
(3) $f(x, y)$ 在 $(0,0)$ 处不可微.

设函数 $f(x), g(x)$ 在 $(-\infty,+\infty)$ 上具有二阶连续导数, $f(0)=g(0)=1$, 且对 $x O y$ 平面上的任一简单闭曲线 $C$, 曲线积分
$$
\oint_C\left[y^2 f(x)+2 y \mathrm{e}^x-8 y g(x)\right] \mathrm{d} x+2[y g(x)+f(x)] \mathrm{d} y=0,
$$
求函数 $f(x), g(x)$.

设函数 $z=f\left(x, 2 x-y, x^2+y^2\right)$ ,其中 $f$ 具有二 阶连续偏导数,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$.

试卷二维码

分享此二维码到群,让更多朋友参与