填空题 (共 1 题 ),请把答案直接填写在答题纸上
写出四阶行列式中含有因子 $a_{11} a_{23}$ 的项.
解答题 (共 12 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
计算 $D=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right|$
计算 $D=\left|\begin{array}{llll}
3 & 1 & 1 & 1 \\
1 & 3 & 1 & 1 \\
1 & 1 & 3 & 1 \\
1 & 1 & 1 & 3
\end{array}\right|$
计算 $D=\left|\begin{array}{cccc}
a & b & c & d \\
a & a+b & a+b+c & a+b+c+d \\
a & 2 a+b & 3 a+2 b+c & 4 a+3 b+2 c+d \\
a & 3 a+b & 6 a+3 b+c & 10 a+6 b+3 c+d
\end{array}\right| .$
已知 $D=\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & 2\end{array}\right|$
(1) 求第一行元素对应的三个余入式;
(2) 求第一行元素对应的
计算$D=\left|\begin{array}{ccc}
\lambda-2 & 1 & -2 \\
-5 & \lambda+3 & -3 \\
1 & 0 & \lambda+2
\end{array}\right|$
已知 $D=\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & 2\end{array}\right|$,
(1) $A_{12}+2 A_{22}+3 A_{32}$ ;(2) 求第 2 行各元素代数余子式之和.
计算$D=\left|\begin{array}{cccc}
2 & 2 & 2 & 2 \\
1 & 2 & 3 & 4 \\
1 & 4 & 9 & 16 \\
1 & 8 & 27 & 64
\end{array}\right| .$
计算 $D_4=\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 2^2 & 3^2 & 4^2 \\
1 & 2^3 & 3^3 & 4^3 \\
9 & 8 & 7 & 6
\end{array}\right| .$
计算 $ D=\left|\begin{array}{cccc}
1+a & 1 & 1 & 1 \\
2 & 2+a & 2 & 2 \\
3 & 3 & 3+a & 3 \\
4 & 4 & 4 & 4+a
\end{array}\right|$
计算$D=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 0 & 0 \\
1 & 0 & 3 & 0 \\
1 & 0 & 0 & 4
\end{array}\right|$
计算 $D_n=\left|\begin{array}{cccccc}
a & b & 0 & \cdots & 0 & 0 \\
0 & a & b & \cdots & 0 & 0 \\
0 & 0 & a & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a & b \\
b & 0 & 0 & \cdots & 0 & a
\end{array}\right|$
计算$D_5=\left|\begin{array}{ccccc}
4 & 3 & & & \\
1 & 4 & 3 & & \\
& 1 & 4 & 3 & \\
& & 1 & 4 & 3 \\
& & & 1 & 4
\end{array}\right| .$