• 试题 ID 35896


设函数 $f(x, y)$ 在 $(0,0)$ 处连续,那么下列命题正确的是( ).
A 若极限 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)}{|x|+|y|}$ 存在,则 $f(x, y)$ 在 $(0,0)$ 处可微;
B 若极限 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)}{x^2+y^2}$ 存在,则 $f(x, y)$ 在 $(0,0)$ 处可微;
C 若 $f(x, y)$ 在 $(0,0)$ 处可微,则极限 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)}{|x|+|y|}$ 存在;
D 若 $f(x, y)$ 在 $(0,0)$ 处可微,则极限 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)}{x^2+y^2}$ 存在.
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见