设 $A$ 为 3 阶非零矩阵,$A^*$ 为 $A$ 的伴随矩阵。若 $A^*=-2 A$ ,则 $A^2=$
A
$\left(\begin{array}{ccc}-4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4\end{array}\right)$
B
$\left(\begin{array}{ccc}-4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 4\end{array}\right)$
C
$\left(\begin{array}{ccc}-4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right)$
D
$\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right)$
E
F