• 试题 ID 35334


已知函数 $f(x)$ 在区间 $[0,1]$ 上有 2 阶导数,且 $f^{\prime \prime}(x) < 0, f(0)=f(1)=0$ .证明:
(1)$f^{\prime}(x)$ 在区间 $(0,1)$ 内存在唯一零点 $x_0$ ,且当 $x \in(0,1)$ 时 $f(x)>0$ ;
(2)$\exists x_1 \in\left(0, x_0\right), x_2 \in\left(x_0, 1\right)$ ,使得 $f\left(x_1\right)=f\left(x_2\right)=\frac{f\left(x_0\right)}{2}$ ,且 $\int_0^1 f(x) \mathrm{d} x < f\left(x_0\right)\left(x_2-x_1\right)$ .
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见