• 试题 ID 34851


设 $f=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$ 是 $n$ 元实二次型,存在 $n$ 维实列向量 $\boldsymbol{x}_1, \boldsymbol{x}_2$ ,使 $\boldsymbol{x}_1^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_1>0$ , $\boldsymbol{x}_2^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_2 < 0$ .证明:存在 $n$ 维实列向量 $\boldsymbol{x}_0 \neq \mathbf{0}$ ,使 $\boldsymbol{x}_0^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_0=0$ .
A
B
C
D
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见