科数网
试题 ID 34347
【所属试卷】
2024-2025北京大学高等数学A(下)第二学期期末考试试题与答案(网友解析)
设 $f$ 是 $\mathbb{R}$ 上 $2 \pi$ 周期的奇函数。在 $[0, \pi]$ 上 $f(x)=x(\pi-x)$ .
(1)证明:$\forall x \in \mathbb{R}, f(x)=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin ((2 n-1) x)}{(2 n-1)^3}$ ;
(2)求 $\sum_{n=1}^{+\infty} \frac{1}{n^6}$ .
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设 $f$ 是 $\mathbb{R}$ 上 $2 \pi$ 周期的奇函数。在 $[0, \pi]$ 上 $f(x)=x(\pi-x)$ .
(1)证明:$\forall x \in \mathbb{R}, f(x)=\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin ((2 n-1) x)}{(2 n-1)^3}$ ;
(2)求 $\sum_{n=1}^{+\infty} \frac{1}{n^6}$ .
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见