科数网
试题 ID 34165
【所属试卷】
2025-2026合工大全国硕士研究生入学考试(数学一)模拟试卷卷六(押题版)
设函数 $f(x)$ 在 $[0,+\infty)$ 上非负可导,$f(0)=2, f(1)=0$ ,且 $\lim _{x \rightarrow+\infty} f^{\prime}(x)=1$ .
(I)证明存在 $c \in(0,+\infty)$ ,有 $f(c)=2$ ;
(II)证明存在 $\xi \in(0,+\infty)$ ,有 $f^{\prime}(\xi)+f^2(\xi)=4$ .
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
设函数 $f(x)$ 在 $[0,+\infty)$ 上非负可导,$f(0)=2, f(1)=0$ ,且 $\lim _{x \rightarrow+\infty} f^{\prime}(x)=1$ .
(I)证明存在 $c \in(0,+\infty)$ ,有 $f(c)=2$ ;
(II)证明存在 $\xi \in(0,+\infty)$ ,有 $f^{\prime}(\xi)+f^2(\xi)=4$ .
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见