• 试题 ID 31181


已知函数 $f(x)$ 在 $\left[0, \frac{\pi}{2}\right]$ 上连续,且满足 $f(x)=\sqrt{1-\sin 2 x}-\int_0^{\frac{\pi}{2}} f(x) \sin x d x$ ,则 $f(x)=()$
A $\sqrt{1-\sin 2 x}-\frac{1}{2}$ .
B $\sqrt{1-\sin 2 x}-\frac{1}{4}$ .
C $\sqrt{1-\sin 2 x}+\frac{1}{4}$ .
D $\sqrt{1-\sin 2 x}+\frac{1}{2}$ .
E
F
答案:

答案与解析仅限VIP可见

解析:

答案与解析仅限VIP可见