A
若 $z_{1}, z_{2}$ 为复数,则 $\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$
B
若 $a, b$ 为向量,则 $\left|a \cdot b\right|=\left|a\right| \cdot\left| b\right|$
C
若 $z_{1}, z_{2}$ 为复数,且 $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$ ,则 $z_{1} z_{2}=0$
D
若 ${a},{b}$ 为向量,且 $\left|a+b\right|=|a-b|$ ,则 $ a \cdot b=0$
E
F