设函数 $f(x, y, z)$ 在单位球 $B=\left\{(x, y, z) \mid x^2+y^2+z^2 \leq 1\right\}$ 上连续可微,且当 $(x, y, z)$ 满足 $x^2+y^2+z^2=1$ 时,$f(x, y, z)=0$ .证明:
(I) $\iiint_B\left(x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+z \frac{\partial f}{\partial z}\right) d x d y d z=-3 \iiint_B f(x, y, z) d x d y d z$ ;
(II)$\left|\iint_B f(x, y, z) d x d y d z\right| \leq \frac{\pi}{3} \max _{(x, y, z) \in B}\|\nabla f(x, y, z)\|$ ,其中 $\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$ .