A
$f(x, y)=\left\{\begin{array}{cc}\frac{\sin (x y)}{x^2+y^2}, & (x, y) \neq(0,0), \\ 0, & x=y=0 .\end{array}\right.$
B
$z=\sin \left(x^2+y^2\right)$
C
$f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^2+y^2}}, & (x, y) \neq(0,0), \\ 0, & x=y=0 .\end{cases}$
D
$z=(1+x y) e^{x y}$ .
E
F