CFMTC数学教育科学研究院--非数B类数学专项--多元微分--陕西版

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、填空题 (共 12 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $z=z(x, y)$ 由方程组 $\left\{\begin{array}{l}x=(t+1) \cos z, \\ y=t \sin z\end{array}\right.$ 确定, $t=t(x, y)$, 则 $\frac{\partial z}{\partial x}=$


设二元函数 $z=z(x, y)$ 有二阶连续偏导数, 且满足
$$
6 \frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial x \partial y}-\frac{\partial^2 z}{\partial y^2}=1,
$$
令变量 $\left\{\begin{array}{l}u=x-2 y \\ v=x+3 y\end{array}\right.$, 那么 $\frac{\partial^2 z}{\partial u \partial v}=$


设 $z=\frac{1}{x} f\left(x^2 y\right)+x y g(x+y)$ ,其中 $f, g$ 具有二阶连续导数, 计算 $\frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}$.


设函数 $f(x, y)$ 具有连续的一阶偏导数,
$$
f(1,1)=1, f_x^{\prime}(1,1)=a \text { 且 } f_y^{\prime}(1,1)=b ,
$$
则函数 $u(x)=f(x, f(x, x))$ 的微分为


曲线 $y=\left(1+\frac{1}{x}\right)^{x-1}$ 有水平渐近线 ________ 和铅直渐近线 ________


设函数 $y(x)$ 由参数方程 $\left\{\begin{array}{l}x=t^3+3 t+1 \\ y=t^3-3 t+1\end{array}\right.$ 确定, 则 $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ ________


已知 $x=a(t-\sin t) ; y=a(1-\cos t)$; $\frac{d y}{d x}=$.


设 $y=y(x)$ 是由方程 $x+y=\arctan (x-y)$ 所确定的隐函数, 求导数 $\frac{d y}{d x}$


设函数 $z=f(x, y)$ 的二阶偏导数存在, $\frac{\partial^2 z}{\partial y^2}=4$, 且 $f(x, 0)=2, f_y^{\prime}(x, 0)=x^2$, 则 $f(x, y)=$


设可微函数 $z=z(x, y)$ 满足 $x^2 \frac{\partial z}{\partial x}+y^2 \frac{\partial z}{\partial y}=2 z^2$, 又设 $u=x, v=\frac{1}{y}-\frac{1}{x}$,
$w=\frac{1}{z}-\frac{1}{x}$, 则对函数 $w=w(u, v)$, 偏导数 $\left.\frac{\partial w}{\partial u}\right|_{\substack{u=2 \\ v=1}}=$


已知 $\mathrm{d} u(x, y)=\frac{y \mathrm{~d} x-x \mathrm{~d} y}{3 x^2-2 x y+3 y^2}$ ,则 $u(x, y)=$


解答题 ( 共 ### 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设函数 $f(u)$ 在 $(0,+\infty)$ 内具有二阶连续导数. 二元函数 $F(x, y)=x^2 f\left(\frac{y}{x}\right)+f(x y)$, 且满 足 $\frac{\partial^2 F}{\partial x^2}-\frac{y^2}{x^2} \frac{\partial^2 F}{\partial y^2}=\frac{2 y}{x} \ln \frac{y}{x}$. 若 $f(1)=1$, 求 $f(u)$ 的表达式.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。