CFMTC数学教育科学研究院--非数B类数学专项--二重积分--陕西版

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、填空题 (共 1 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
二重积分 $\iint_D \sin \left(\max \left\{x^2, y^2\right\}\right) \mathrm{d} x \mathrm{~d} y=$ 其中
$$
D=[0, \sqrt{\pi}] \times[0, \sqrt{\pi}] .
$$


二、解答题 ( 共 8 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设区域 $D: 0 \leqslant x \leqslant 2,|y| \leqslant x$, 函数 $f(x, y)=\max _{-1 \leqslant \leqslant \leqslant 3}\left(t^2-2 x t+y^3\right)$, 计算二重积分 $\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y$.



设区域 $D: 0 \leqslant x \leqslant 2,|y| \leqslant x$, 函数 $f(x, y)=\max _{-1 \leqslant t \leqslant 3}\left(t^2-2 x t+y^3\right.$ ), 计算二重积分 $\iint_D f(x, y) \mathrm{d} x \mathrm{~d} y$.



求二重积分 $\iint_D \frac{\mathrm{d} \sigma}{\sqrt{x+y+4}}$, 其中
$$
D=\{(x, y):|x|+|y| \leq 1\} .
$$



计算二重积分 $\iint_D \frac{x+y}{x^2+y^2} d x d y$, 其中 $D=\left\{(x, y) \mid x^2+y^2 \leq 1, x+y \geq 1\right\}$ 。



计算二重积分 $\iint_D\left|y^2-x^2\right| \mathrm{d} \sigma$ ,其中
$$
D=\{(x, y) \mid x \in[-1,1], y \in[0,2]\} .
$$



计算二重积分 $I=\iint_D x \mathrm{~d} x \mathrm{~d} y$, 其中 $D$ 由 $y=\sqrt{1-x^2}, y=\sqrt{2 x-x^2}$ 与 $x$ 轴所围成的区域.



设 $D=\left\{(x, y): x^2+y^2 \leq 1\right\}$, 实数 $\alpha, \beta$ 满足 $\alpha^2+\beta^2=1$, 计算二重积分
$$
\iint_D \frac{\mathrm{d} x \mathrm{~d} y}{\sqrt{(1-\alpha x+\beta y)^2+(\beta x+\alpha y)^2}} .
$$



求二重积分 $I=\iint_D\left|x^2+y^2-4\right| d x d y$ ,其中 $D=\left\{(x, y) \mid x^2+y^2 \leq 16\right\}$ 。



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷