高等数学A版上册第二章提高训练题

数学



单选题 (共 2 题 ),每题只有一个选项正确
设周期函数 $f(x)$ 在 $(-\infty,+\infty)$ 内可导, 周期为 4 , 又 $\lim _{x \rightarrow 0} \frac{f(1)-f(1-x)}{2 x}=-1$,则曲线 $y=f(x)$ 在 $x=5$ 处切线斜率为
$\text{A.}$ $\frac{1}{2}$ $\text{B.}$ 0 $\text{C.}$ -1 $\text{D.}$ -2

设函数 $f(x)=\left\{\begin{array}{cc}g(x) \cos \frac{1}{x^2}, & x \neq 0, \\ 0, & x=0,\end{array}\right.$ 且 $g(0)=g^{\prime}(0)=0$, 则 $f(x)$ 在点 $x=0$ 处
$\text{A.}$ 连续但不可导. $\text{B.}$ 可导但 $f^{\prime}(0) \neq 0$. $\text{C.}$ 极限存在但不连续. $\text{D.}$ 可微且 $\left.\mathrm{d} f(x)\right|_{x=0}=0$.

填空题 (共 1 题 ),请把答案直接填写在答题纸上
由方程 $y=\cos (x y)-x$ 所确定的隐函数为 $y=f(x)$, 求导数 $f^{\prime}(x)$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。