利用极限求参数

数 学



单选题 (共 3 题 ),每题只有一个选项正确
设函数 $f(x)=\left\{\begin{array}{ll}\frac{1-\cos x}{e^x-1-x}, & x < 0 \\ a \quad, & x=0 \\ x \sin \frac{1}{x}+b, & x>0\end{array}\right.$ 在 $x=0$ 处连续,则常数 $\mathrm{a}, \mathrm{b}$ 的值为
$\text{A.}$ $a=1, b=1$ $\text{B.}$ $a=0, b=1$ $\text{C.}$ $a=1, b=0$ $\text{D.}$ $a=0, b=-1$

已知 $\lim _{x \rightarrow \infty}\left(\frac{x^2}{x+1}-a x-b\right)=0$ ,其中 $a, b$ 是常数,则
$\text{A.}$ $a=1, b=1$ . $\text{B.}$ $a=-1, b=1$ . $\text{C.}$ $a=1, b=-1$ . $\text{D.}$ $a=-1, b=-1$ .

设 $\lim _{x \rightarrow 0} \frac{a \tan x+b(1-\cos x)}{c \ln (1-2 x)+d\left(1-\mathrm{e}^{-x^{\prime}}\right)}=2$ ,其中 $a^2+c^2 \neq 0$ ,则必有
$\text{A.}$ $b=4 d$ . $\text{B.}$ $b=-4 d$ . $\text{C.}$ $a=4 c$ . $\text{D.}$ $a=-4 c$ .

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。